To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes—at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.
The relatively recent origin of sex chromosomes in the plant genus Silene provides an opportunity to study the early stages of sex chromosome evolution and, potentially, to test between the different population genetic processes likely to operate in nonrecombining chromosomes such as Y chromosomes. We previously reported much lower nucleotide polymorphism in a Y-linked gene (SlY1) of the plant Silene latifolia than in the homologous X-linked gene (SlX1). Here, we report a more extensive study of nucleotide diversity in these sex-linked genes, including a larger S. latifolia sample and a sample from the closely related species Silene dioica, and we also study the diversity of an autosomal gene, CCLS37.1. We demonstrate that nucleotide diversity in the Y-linked genes of both S. latifolia and S. dioica is very low compared with that of the X-linked gene. However, the autosomal gene also has low DNA polymorphism, which may be due to a selective sweep. We use a single individual of the related hermaphrodite species Silene conica, as an outgroup to show that the low SlY1 diversity is not due to a lower mutation rate than that for the X-linked gene. We also investigate several other possibilities for the low SlY1 diversity, including differential gene flow between the two species for Y-linked, X-linked, and autosomal genes. The frequency spectrum of nucleotide polymorphism on the Y chromosome deviates significantly from that expected under a selective-sweep model. However, we detect population subdivision in both S. latifolia and S. dioica, so it is not simple to test for selective sweeps. We also discuss the possibility that Y-linked diversity is reduced due to highly variable male reproductive success, and we conclude that this explanation is unlikely.
The action of natural selection is expected to reduce the effective population size of a nonrecombining chromosome, and this is thought to be the chief factor leading to genetic degeneration of Y‐chromosomes, which cease recombining during their evolution from ordinary chromosomes. Low effective population size of Y chromosomes can be tested by studying DNA sequence diversity of Y‐linked genes. In the dioecious plant, Silene latifolia, which has sex chromosomes, one comparison (SlX1 vs. SlY1) indeed finds lower Y diversity compared with the homologous X‐linked gene, and one Y‐linked gene with no X‐linked homologue has lower species‐wide diversity than a homologous autosomal copy (SlAp3Y vs. SlAp3A). To test whether this is a general pattern for Y‐linked genes, we studied two further recently described X and Y homologous gene pairs in samples from several populations of S. latifolia and S. dioica. Diversity is reduced for both Y‐linked genes, compared with their X‐linked homologues. Our new data are analysed to show that the low Y effective size cannot be explained by different levels of gene flow for the X vs. the Y chromosomes, either between populations or between these closely related species. Thus, all four Y‐linked genes that have now been studied in these plants (the two studied here, and two previously studied genes, have low diversity). This supports other evidence for an ongoing degeneration process in these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.