Because oligomers and aggregates of the protein α-synuclein (αS) are implicated in the initiation and progression of Parkinson's disease, investigation of various αS aggregation pathways and intermediates aims to clarify the etiology of this common neurodegenerative disorder. Here, we report the formation of short, flexible, β-sheet-rich fibrillar species by incubation of αS in the presence of intermediate (10-20% v∕v) concentrations of 2,2,2-trifluoroethanol (TFE). We find that efficient production of these TFE fibrils is strongly correlated with the TFE-induced formation of a monomeric, partly helical intermediate conformation of αS, which exists in equilibrium with the natively disordered state at low [TFE] and with a highly α-helical conformation at high [TFE]. This partially helical intermediate is on-pathway to the TFE-induced formation of both the highly helical monomeric conformation and the fibrillar species. TFE-induced conformational changes in the monomer protein are similar for wild-type αS and the C-terminal truncation mutant αS1-102, indicating that TFE-induced structural transitions involve the N terminus of the protein. Moreover, the secondary structural transitions of three Parkinson's disease-associated mutants, A30P, A53T, and E46K, are nearly identical to wild-type αS, but oligomerization rates differ substantially among the mutants. Our results add to a growing body of evidence indicating the involvement of helical intermediates in protein aggregation processes. Given that αS is known to populate both highly and partially helical states upon association with membranes, these TFE-induced conformations imply relevant pathways for membrane-induced αS aggregation both in vitro and in vivo.is one of a number of synucleopathies in which aggregation of the protein α-Synuclein (αS) is linked to pathogenesis (1). αS is intrinsically disordered, but in the presence of lipid or detergent vesicles or micelles, adopts a highly helical structure in which its N-terminal region is membrane-bound and the C-terminal tail remains predominantly free and unstructured (2, 3). Although most PD cases are sporadic or idiopathic, three point mutations of α-Synuclein-A53T, A30P, and E46K-are associated with familial and early-onset disease (see Review (4)).In addition to its free and membrane-bound states, αS adopts partially structured intermediate conformations under low-pH or high-temperature conditions (5). A folding intermediate has also been detected at low [TFE] (6). Conditions favoring the formation of these intermediates also promote amyloid fibril growth, possibly implicating intermediate conformers as key species in the aggregation pathways.Here, we examine TFE-induced monomer conformational changes, oligomerization, and fibrillization in detail for wild-type (WT) αS, C terminally truncated WT αS (αS102), and the PDassociated αS mutants A30P, A53T, and E46K, expanding upon previous studies by Munishkina, et. al. (6) and Li, et. al. (7). This research also complements our previous fluorescence correlatio...
BackgroundFluorescent tags, including small organic molecules and fluorescent proteins, enable the localization of protein molecules in biomedical research experiments. However, the use of these labels may interfere with the formation of larger-scale protein structures such as amyloid aggregates. Therefore, we investigate the effects of some commonly used fluorescent tags on the morphologies of fibrils grown from the Alzheimer's disease-associated peptide Amyloid β 1-40 (Aβ40) and the Parkinson's disease-associated protein α-synuclein (αS).ResultsUsing transmission electron microscopy (TEM), we verify that N-terminal labeling of Aβ40 with AMCA, TAMRA, and Hilyte-Fluor 488 tags does not prevent the formation of protofibrils and amyloid fibrils of various widths. We also measure the two-photon action cross-section of Aβ40 labelled with Hilyte Fluor 488 and demonstrate that this tag is suitable for use with two-photon fluorescence techniques. Similarly, we find that Alexa Fluor 488 labelling of αS variant proteins near either the N or C terminus (position 9 or 130) does not interfere with the formation of amyloid and other types of αS fibrils. We also present TEM images of fibrils grown from αS C-terminally labelled with enhanced green fluorescent protein (EGFP). Near neutral pH, two types of αS-EGFP fibrils are observed via TEM, while denaturation of the EGFP tag leads to the formation of additional species.ConclusionsWe demonstrate that several small extrinsic fluorescent tags are compatible with studies of amyloid protein aggregation. However, although fibrils can be grown from αS labelled with EGFP, the conformation of the fluorescent protein tag affects the observed aggregate morphologies. Thus, our results should assist researchers with label selection and optimization of solution conditions for aggregation studies involving fluorescence techniques.
Studies of amyloid disease-associated proteins in aqueous solutions containing 2,2,2-trifluoroethanol (TFE) have shown that the formation of structural intermediates is often correlated with enhanced protein aggregation. Here, enhanced green fluorescent protein (EGFP) is used as a model protein system to investigate the causal relationship between TFE-induced structural transitions and aggregation. Using circular dichroism spectroscopy, light scattering measurements, and transmission electron microscopy imaging, we demonstrate that population of a partially α-helical, monomeric intermediate is roughly correlated with the growth of β-sheet-rich, flexible fibrils for acid-denatured EGFP. By fitting our circular dichroism data to a model in which TFE-water mixtures are assumed to be ideal solutions, we show that increasing entropic costs of protein solvation in TFE-water mixtures may both cause the population of the intermediate state and increase aggregate production. Tertiary structure and electrostatic repulsion also impede aggregation. We conclude that initiation of EGFP aggregation in TFE likely involves overcoming of multiple protective factors, rather than stabilization of aggregation-prone structural elements.
Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson’s disease-associated protein α–synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol (TFE). At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.