Objective• To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium. Materials and Methods• Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension.• Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex ® Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively.• OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application.• Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures. Results• Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing.• After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated.• OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release. Conclusion• These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves.
Facilitative UT-A urea transporters play a central role in the urinary concentrating mechanism. There are three major UT-A isoforms found in the mouse kidney: mUT-A1, mUT-A2, and mUT-A3. The major aim of this study was to identify the location and function of mUT-A3. UT-A proteins were investigated using three novel mouse UT-A-targeted antibodies: ML446, MQ2, and ML194. ML446 detected mUT-A1 and mUT-A3. ML194 detected mUT-A1 and mUT-A2. Importantly, MQ2 was found to be selective for mUT-A3. MQ2 detected a 45- to 65-kDa signal in the mouse kidney inner medulla, which was deglycosylated to a 40-kDa protein band. Immunolocalization studies showed that mUT-A3 was strongly detected in the papillary tip, mainly in the basolateral regions of inner medullary collecting duct (IMCD) cells. Immunoblotting of subcellular fractions of inner medullary protein suggested that in mouse kidney mUT-A3 was present in plasma membranes. Consistent with this, immunoelectron microscopy demonstrated that mUT-A3 was predominantly localized at the basal plasma membrane domains of the IMCD cells in mouse kidney. Heterologous expression of mUT-A3-enhanced green fluorescent protein in Madin-Darby canine kidney cells showed that the protein localized to the basolateral membrane. In conclusion, our study indicates that mUT-A3 is a basolateral membrane transporter expressed in IMCD cells.
Recent studies provide further evidence that afferent control of the bladder may be dependent on integration of excitatory and inhibitory mediators from the urothelium such as ATP and nitric oxide. A number of studies have examined the role cholinergic and adrenergic mechanisms play in bladder afferent function, and several new potential mechanisms involving the cannabinoid receptors and transient receptor potential channels have emerged as areas which warrant further investigation. A better understanding of afferent mechanisms in the bladder will hopefully lead to more effective treatments of lower urinary tract disorders.
Most higher-education institutions strive to be publicly engaged and community centered. These institutions leverage faculty, researchers, librarians, community liaisons, and communication specialists to meet this mission, but they have largely underutilized the potential of institutional repositories. Academic institutions can use institutional repositories to provide open access and long-term preservation to institutional gray literature, research data, university publications, and campus research products that have tangible, real-world applications for the communities they serve. Using examples from the University of Minnesota, this article demonstrates how making this content discoverable, openly accessible, and preserved for the future through an institutional repository not only increases the value of this publicly-engaged work but also creates a lasting record of a university’s public engagement efforts and contributes to the mission of the institution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.