Metabotropic glutamate receptor 1 (mGluR1) is a member of a large family of G-protein-coupled glutamate receptors, the physiological functions of which are largely unknown. Mice deficient in mGluR1 have severe motor coordination and spatial learning deficits. They have no gross anatomical or basic electrophysiological abnormalities in either the cerebellum or hippocampus, but they show impaired cerebellar long-term depression and hippocampal mossy fibre long-term potentiation. mGluR1-deficient mice should therefore be valuable models for studying synaptic plasticity.
The transfer of unesterified fatty acids (FA) from adipocyte fatty acid binding protein (A-FABP) to phospholipid membranes is proposed to occur via a collisional mechanism involving transient ionic and hydrophobic interactions [Wootan & Storch (1994) J. Biol. Chem. 269, 10517-10523]. In particular, it was suggested that membrane acidic phospholipids might specifically interact with basic residues on the surface of A-FABP. Here we addressed whether lysine residues on the surface of the protein are involved in this collisional transfer mechanism. Recombinant A-FABP was acetylated to neutralize all positively charged surface lysine residues. Protein fluorescence, CD spectra, and chemical denaturant data indicate that acetylation did not substantially alter the conformational integrity of the protein, and nearly identical affinities were obtained for binding of the fluorescently labeled FA [12-(9-anthroyloxy)oleate] to native and acetylated protein. Transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated A-FABP to small unilamellar vesicles (SUV) was 35-fold slower than from native protein. In addition, whereas the 2AP transfer rate from native A-FABP was directly dependent on SUV concentration, 2AP transfer from acetylated protein was independent on the concentration of acceptor membranes. Factors which alter aqueous-phase solubility of FA, such as ionic strength and acyl chain length and saturation, affected the AOFA transfer rate from acetylated but not native A-FABP. Finally, an increase in the negative charge density of the acceptor SUV resulted in a marked increase in the rate of transfer from native A-FABP but did not increase the rate from acetylated A-FABP.(ABSTRACT TRUNCATED AT 250 WORDS)
Human adipocyte lipid-binding protein (H-ALBP) was purified from normal subcutaneous adipose tissue to greater than 98% homogeneity, utilizing a combination of acid fractionation, gel filtration, covalent chromatography on activated thiol-Sepharose 4B, and anion-exchange chromatography. Human ALBP comprised about 1% of total cytosolic protein in human adipose tissue, had a relative molecular mass of about 15 kDa, and existed as a monomer in solution. The amino terminus of H-ALBP was blocked to sequencing. When a liposome ligand delivery assay was used, H-ALBP saturably bound oleic acid with about 1 mol of ligand bound per mole of protein. Additionally, H-ALBP saturably bound retinoic acid as determined by the quenching of intrinsic tryptophan fluorescence. A full-length H-ALBP cDNA has been cloned; the sequence predicts a 649-base mRNA comprised of a 62-base 5'-noncoding region containing an 18S ribosome-binding site, a single 396-base open-reading frame, and a 191-base 3'-noncoding region. Comparative sequence analysis indicated that the 132 amino acid H-ALBP is a member of a multigene family of intracellular lipid-binding proteins and contains the consensus substrate phosphorylation sequence for tyrosyl kinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.