Abstract. Considering an initial set of terms E, a rewriting relation R and a goal set of terms Bad, reachability analysis in term rewriting tries to answer to the following question: does there exists at least one term of Bad that can be reached from E using the rewriting relation R? Some of the approaches try to show that there exists at least one term of Bad reachable from E using the rewriting relation R by computing the set of reachable terms. Some others tackle the unreachability problem i.e. no term of Bad is reachable by rewriting from E. For the latter, over-approximations are computed. A main obstacle is to be able to compute an over-approximation precise enough that does not intersect Bad i.e. a conclusive approximation. This notion of precision is often defined by a very technical parameter of techniques implementing this over-approximation approach. In this paper, we propose a new characterization of conclusive approximations by logical formulae generated from a new kind of automata called symbolic tree automata. Solving a such formula leads automatically to a conclusive approximation without extra technical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.