The neural mechanisms whereby placebo conditioning leads to placebo analgesia remain unclear. In this study we aimed to identify the brain structures activated during placebo conditioning and subsequent placebo analgesia. We induced placebo analgesia by associating a sham treatment with pain reduction and used fMRI to measure brain activity associated with three stages of the placebo response: before, during and after the sham treatment, while participants anticipated and experienced brief laser pain. In the control session participants were explicitly told that the treatment was inactive. The sham treatment group reported a significant reduction in pain rating (p = 0.012). Anticipatory brain activity was modulated during placebo conditioning in a fronto-cingulate network involving the left dorsolateral prefrontal cortex (DLPFC), medial frontal cortex and the anterior mid-cingulate cortex (aMCC). Identical areas were modulated during anticipation in the placebo analgesia phase with the addition of the orbitofrontal cortex (OFC). However, during altered pain experience only aMCC, post-central gyrus and posterior cingulate demonstrated altered activity. The common frontal cortical areas modulated during anticipation in both the placebo conditioning and placebo analgesia phases have previously been implicated in placebo analgesia. Our results suggest that the main effect of placebo arises from the reduction of anticipation of pain during placebo conditioning that is subsequently maintained during placebo analgesia.
Comparison of the photobleaching rates suggests that a blue light intensity of 5 mW/cm(2) gives the same rate of photobleaching as the typical red light PDT intensity of 100 mW/cm(2). Further investigation of the correlation between PpIX photobleaching and PDT effect would be beneficial in interpreting the clinical significance of our findings.
A novel, compact and low-cost multispectral fluorescence imaging system with an integrated excitation light source is described. Data are presented demonstrating the application of this method to in vivo monitoring of fluorescence before, during and after topical 5-aminolevulinic acid photodynamic therapy of superficial skin cancers. The excitation source comprised a fluorescent tube with the phosphor selected to emit broadband violet light centered at 394 nm. The camera system simultaneously captured spectrally specific images of the fluorescence of the photosensitizer, protoporphyrin IX, the illumination profile and the skin autofluorescence. Real-time processing enabled images to be manipulated to create a composite image of high contrast. The application and validation of this method will allow further detailed studies of the characteristics and time-course of protoporphyrin IX fluorescence, during topical photodynamic therapy in human skin in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.