During the symbiosis between the bacterium Rhizobium meliloti and plants such as alfalfa, the bacteria elicit the formation of nodules on the roots of host plants. The bacteria infect the nodule, enter the cytoplasm of plant cells and differentiate into a distinct cell type called a bacteroid, which is capable of fixing atmospheric nitrogen. To discover bacterial genes involved in the infection and differentiation stages of symbiosis, we obtained genes expressed at the appropriate time and place in the nodule by identifying promoters that are able to direct expression of the bacA gene, which is required for bacteroid differentiation. We identified 230 fusions that are expressed predominantly in the nodule. Analysis of 23 sequences indicated that only three encode proteins known to be involved in the Rhizobium–legume symbiosis, six encode proteins with homology to proteins not previously associated with symbiosis, and 14 have no significant similarity to proteins of known function. Disruption of a locus that encodes a protein with homology to a cell adhesion molecule led to a defect in the formation of nitrogen‐fixing nodules, resulting in an increased number of nitrogen‐starved plants. Our isolation of a large number of nodule‐expressed genes will help to open the intermediate stages of nodulation to molecular analysis.
ABSTRACTSinorhizobium melilotican live as a soil saprophyte and can engage in a nitrogen-fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma (σ) factors interacting with core RNA polymerase. TheS. melilotigenome encodes 14 of these alternative σ factors, including two putative RpoH (“heat shock”) σ factors. We used custom Affymetrix symbiosis chips to characterize the global transcriptional response ofS. melilotirpoH1,rpoH2, andrpoH1 rpoH2mutants during heat shock and stationary-phase growth. Under these conditions, expression of over 300 genes is dependent onrpoH1andrpoH2. We mapped transcript start sites of 69rpoH-dependent genes using 5′ RACE (5′ rapid amplification of cDNA ends), which allowed us to determine putative RpoH1-dependent, RpoH2-dependent, and dual-promoter (RpoH1- and RpoH2-dependent) consensus sequences that were each used to search the genome for other potential direct targets of RpoH. The inferredS. melilotiRpoH promoter consensus sequences share features ofEscherichia coliRpoH promoters but lack extended −10 motifs.
Hybridization to a PCR product derived from conserved sigma-factor sequences led to the identification of two Sinorhizobium meliloti DNA segments that display significant sequence similarity to the family of rpoH genes encoding the σ 32 (RpoH) heat-shock transcription factors. The first gene, rpoH1, complements an Escherichia coli rpoH mutation. Cells containing an rpoH1 mutation are impaired in growth at 37 SC under free-living conditions and are defective in nitrogen fixation during symbiosis with alfalfa. A plasmid-borne rpoH1-gusA fusion increases in expression upon entry of the culture into the stationary phase of growth. The second gene, designated rpoH2, is 42% identical to the S. meliloti rpoH1 gene. Cells containing an rpoH2 mutation have no apparent phenotype under free-living conditions or during symbiosis with the host plant alfalfa. An rpoH2-gusA fusion increases in expression during the stationary phase of growth. The presence of two rpoH-like sequences in S. meliloti is reminiscent of the situation in Bradyrhizobium japonicum, which has three rpoH genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.