p38 mitogen-activated protein (MAP) kinase activities were significantly increased in mouse hearts after chronic transverse aortic constriction, coincident with the onset of ventricular hypertrophy. Infection of cardiomyocytes with adenoviral vectors expressing upstream activators for the p38 kinases, activated mutants of MAP kinase kinase 3b(E) (MKK3bE) and MAP kinase kinase 6b(E) (MKK6bE), elicited characteristic hypertrophic responses, including an increase in cell size, enhanced sarcomeric organization, and elevated atrial natriuretic factor expression. Overexpression of the activated MKK3bE in cardiomyocytes also led to an increase in apoptosis. The hypertrophic response was enhanced by co-infection of an adenoviral vector expressing wild type p38, and was suppressed by the p38 dominant negative mutant. In contrast, the MKK3bE-induced cell death was increased by co-infection of an adenovirus expressing wild type p38␣, and was suppressed by the dominant negative p38␣ mutant. This provides the first evidence in any cell system for divergent physiological functions for different members of the p38 MAP kinase family. The direct involvement of p38 pathways in cardiac hypertrophy and apoptosis suggests a significant role for p38 signaling in the pathophysiology of heart failure.
Defects in neural tube formation are among the most common malformations leading to infant mortality. Although numerous genetic loci appear to contribute to the defects observed in humans and in animal model systems, few of the genes involved have been characterized at the molecular level. Mice lacking the p53 tumour suppressor gene are predisposed to tumours, but the viability of these animals indicates that p53 function is not essential for embryonic development. Here, we demonstrate that a fraction of p53-deficient embryos in fact do not develop normally. These animals display defects in neural tube closure resulting in an overgrowth of neural tissue in the region of the mid-brain, a condition known as exencephaly.
Receptor-mediated Gq signaling promotes hypertrophic growth of cultured neonatal rat cardiac myocytes and is postulated to transduce in vivo cardiac pressure overload hypertrophy. Although initially compensatory, hypertrophy can proceed by unknown mechanisms to cardiac failure. We used adenoviral infection and transgenic overexpression of the alpha subunit of Gq to autonomously activate Gq signaling in cardiomyocytes. In cultured cardiac myocytes, overexpression of wild-type G␣q resulted in hypertrophic growth. Strikingly, expression of a constitutively activated mutant of G␣q, which further increased Gq signaling, produced initial hypertrophy, which rapidly progressed to apoptotic cardiomyocyte death. This paradigm was recapitulated during pregnancy in G␣q overexpressing mice and in transgenic mice expressing high levels of wild-type G␣q. The consequence of cardiomyocyte apoptosis was a transition from compensated hypertrophy to a rapidly progressive and lethal cardiomyopathy. Progression from hypertrophy to apoptosis in vitro and in vivo was coincident with activation of p38 and Jun kinases. These data suggest a mechanism in which moderate levels of Gq signaling stimulate cardiac hypertrophy whereas high level Gq activation results in cardiomyocyte apoptosis. The identification of a single biochemical stimulus regulating cardiomyocyte growth and death suggests a plausible mechanism for the progression of compensated hypertrophy to decompensated heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.