A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxide/hydroperoxyl radical by nitrones in buffered media is described. This method is based on a competition between the superoxide trapping by the nitrone and the spontaneous dismutation of this radical in aqueous media. EPR spectra are recorded as a function of time at various nitrone concentrations, and kinetic curves are obtained after treatment of these spectra using both singular value decomposition and pseudo-inverse deconvolution methods. Modelling these curves permits the determination of the rate constants k(T) and k(D) for the superoxide trapping and the adduct decay reactions, respectively. Kinetics parameters thus obtained with six nitrones, namely the 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (EMPO), the 5-diethoxyphosphoryl-5-methyl-3,4-dihydro-5H-pyrrole N-oxide (DEPMPO), the 5,5-dimethyl-3,4-dihydro-5H-pyrrole N-oxide (DMPO), the 1,3,5-tri[(N-(1-diethylphosphono)-1-methylethyl)-N-oxy-aldimine]benzene (TN), the N-benzylidene-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPN), and the N-[(1-oxidopyridin-1-ium-4-yl)methylidene]-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPyON), indicate that cyclic nitrones trapped superoxide faster than the linear ones. However, the low k(T) values obtained for compounds show that there is still a need for new molecules with better spin trapping capacities.
The C-ON bond homolysis in alkoxyamine 2a can be chemically triggered by the protonation of the 4-pyridylalkyl fragment. The resulting 15-fold increase in k(d) (Chem. Commun. 2011, 47, 4291-4293) was investigated experimentally and theoretically by quaternization of the pyridyl moiety using methylating (MeOTs), acylating (AcCl), and benzylating (PhCH(2)Br) agents as well as by oxidation of the pyridyl moiety into N-oxide and by the formation of a dative bond with BH(3) as a Lewis acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.