Canstatin, the noncollagenous domain of collagen type IV A-chains, belongs to a series of collagen-derived angiogenic inhibitors. We have elucidated the functional receptors and intracellular signaling induced by canstatin that explain its strong antitumor efficacy in vivo. For this purpose, we generated a canstatin-human serum albumin (CanHSA) fusion protein, employing the HSA moiety as an expression tag. We show that CanHSA triggers a crucial mitochondrial apoptotic mechanism through procaspase-9 cleavage in both endothelial and tumor cells, which is mediated through cross-talk between A v B 3 -and A v B 5 -integrin receptors. As a point of reference, we employed the first three kringle domains of angiostatin (K1-3), fused with HSA, which, in contrast to CanHSA, act only on endothelial cells through A v B 3 -integrin receptor-mediated activation of caspase-8 alone, without ensuing mitochondrial damage. Taken together, these results provide insights into how canstatin might exert its strong anticancer effect. (Cancer Res 2005; 65(10): 4353-61)
DCE-US allowed quantitative in vivo evaluation of the functional effects of AVE8062, which was found most effective on tumoral microvasculature 6 hours after its administration. A clinical phase-1 study of AVE8062 is ongoing using the same ultrasonography methodology before and 6 and 24 hours postadministration.
In this study, we have evaluated the interactions between ionizing radiation and a matrix metalloproteinase (MMP) inhibitor. Using Matrigel invasion assays, we show that ionizing radiation induced a dose-dependent increase in the invasive phenotype of cultured B16 melanoma cells and that conditioned medium from these irradiated B16 cells promoted endothelial cell [human microvascular endothelial cells (HMEC)] invasiveness. To determine whether the radiation-induced changes in invasive phenotype could be due to changes in MMP activation, we have tested the ability of the MMP inhibitor Metastat to modulate the ionizing radiation -induced invasive phenotype using both an in vitro melanoma model and a mouse s.c. tumor model. In these studies, Metastat inhibited the ionizing radiation -induced invasive phenotype in cultured B16 cells and similarly inhibited the increase in HMEC invasion induced by conditioned medium from irradiated B16 cells. Conversely, ionizing radiation increased B16 MMP-2 activity and the conditioned medium from irradiated B16 induced HMEC MMP-2 activity. To further investigate the interaction between ionizing radiation and MMP activation, we then studied the effects of ionizing radiation on downstream effectors of the MMP system. We found that ionizing radiation induced vascular endothelial growth factor (VEGF) secretion by B16 melanoma cells and that this secretion was inhibited by Metastat. Similarly, conditioned medium from irradiated B16 was also able to increase VEGF secretion in HMECs. Moreover, ionizing radiation -induced melanoma cell invasiveness was partially inhibited by an anti-VEGF monoclonal antibody. In vivo, ionizing radiation plus concomitant Metastat yielded the greatest growth inhibition of melanoma s.c. tumors and this effect correlated with inhibition of angiogenesis as measured by both Doppler ultrasonography and platelet/endothelial cell adhesion molecule-1 staining. Finally, ionizing radiation modulated MMP-2, VEGF, and VEGF receptor expression in these tumor samples using immunohistochemistry. Taken together, these results suggest that there is an ionizing radiationinduced tumor survival pathway and a possible paracrine ionizing radiation -induced stimulatory pathway emanating from tumor cells toward the endothelial bed that is impeded when Metastat is given simultaneously. This model could provide in vivo evidence of the antitumor efficacy of combining a MMP inhibitor with ionizing radiation to target radiation-induced invasion and angiogenesis.
The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. SIGNIFICANCE: Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization. Cancer Discov; 2(5); 434-49.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.