We prove that on any connected unimodular Lie group G , the space L p α (G) ∩ L ∞ (G), where L p α (G) is the Sobolev space of order α > 0 associated with a sublaplacian, is an algebra under pointwise product. This generalizes results due to Strichartz (in the Euclidean case), to Bohnke (in the case of stratified groups), and others. A global version of this fact holds for groups with polynomial growth. We give similar results for Riemannian manifolds with Ricci curvature bounded from below, respectively nonnegative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.