Currently, there is a strong interest in barrel ageing of finished, conventionally fermented beers, as a novel way to produce sour beers with a rich and complex flavour profile. The production process, however, remains largely a process of trial and error, often resulting in profit losses and inconsistency in quality. To improve product quality and consistency, a better understanding of the interactions between microorganisms, wood and maturing beer is needed. The aim of this study was to describe the temporal dynamics in microbial community composition, beer chemistry and sensory characteristics during barrel ageing of three conventionally fermented beers that differed in parameters like alcohol content and bitterness. Beers were matured for 38 weeks in new (two types of wood) and used (one type of wood) oak barrels. Beer samples were taken at the start of the maturation and after 2, 12 and 38 weeks. Microbial community composition, determined using amplicon sequencing of the V4 region of the bacterial 16S rRNA gene and the fungal ITS1 region, beer chemistry and sensory characteristics substantially changed throughout the maturation process.Likewise, total bacterial and fungal population densities generally increased during maturation.PerMANOVA revealed significant differences in the bacterial and fungal community composition of the three beers and across time points, but not between the different wood types. By contrast, significant differences in beer chemistry were found across the different beers, wood types and sampling points. Results also indicated that the outcome of the maturation process likely depends on the initial beer properties. Specifically, results suggested that beer bitterness may restrain the bacterial community composition, thereby having an impact on beer souring. While the bacterial community composition of moderately-hopped beers shifted to a dominance of lactic acid bacteria, the bacterial community of the high-bitterness beer remained fairly constant, with low population 3 densities. Bacterial community composition of the moderate-bitterness beers also resembled those of traditional sours like lambic beers, hosting typical lambic brewing species like Pediococcus damnosus, Lactobacillus brevis and Acetobacter sp. Furthermore, results suggested that alcohol level may have affected the fungal community composition and extraction of wood compounds. More specifically, the concentration of wood compounds like cis-3-methyl-4-octanolide, trans-3-methyl-4octanolide, eugenol and total polyphenols was higher in beers with a high alcohol content. Altogether, our results provide novel insights into the barrel ageing process of beer, and may pave the way for a new generation of sour beers.
Summary Barrel‐ageing of conventionally fermented beers is becoming increasingly popular in recent years, but only very little is known about the underlying process. In this study, we show that wood species significantly affects the bacterial community composition, beer chemistry and sensory characteristics throughout 38 weeks of barrel‐ageing. Whereas the microbial communities of oak‐ and acacia‐aged beer became dominated by Pediococcus damnosus and Brettanomyces bruxellensis, beer aged in oak barrels also contained a large fraction of Acetobacter sp. (29.34%) and to a lesser extent Paenibacillus sp. (2.74%) that were almost undetected in acacia‐aged beer. Oak barrels also imparted substantial concentrations of eugenol, lactones and vanillin, while acacia‐aged beer contained high concentrations of total polyphenols and β‐glucan, which also translated into different sensory perceptions. Altogether, our results provide novel insights into the barrel‐ageing process of beer, and may pave the way for a new generation of beers with a noteworthy flavour complexity.
Sour beers produced by barrel-aging of conventionally fermented beers are becoming increasingly popular. However, as the intricate interactions between the wood, the microbes and the beer are still unclear, wood maturation often leads to inconsistent end products with undesired sensory properties. Previous research on industrial barrel-aging of beer suggests that beer parameters like the ethanol content and bitterness play an important role in the microbial community composition and beer chemistry, but their exact impact still remains to be investigated. In this study, an experimentally tractable lab-scale system based on an in-vitro community of four key bacteria (Acetobacter malorum, Gluconobacter oxydans, Lactobacillus brevis and Pediococcus damnosus) and four key yeasts (Brettanomyces bruxellensis, Candida friedrichii, Pichia membranifaciens and Saccharomyces cerevisiae) that are consistently associated with barrel-aging of beer, was used to test the hypotheses that beer ethanol and bitterness impact microbial community composition and beer chemistry. Experiments were performed using different levels of ethanol (5.2 v/v%, 8 v/v% and 11 v/v%) and bitterness (13 ppm, 35 ppm and 170 ppm iso-α-acids), and beers were matured for 60 days. Samples were taken after 0, 10, 20, 30 and 60 days to monitor population densities and beer chemistry. Results revealed that all treatments and the maturation time significantly affected the microbial community composition and beer chemistry. More specifically, the ethanol treatments obstructed growth of L. brevis and G. oxydans and delayed fungal growth. The iso-α-acid treatments hindered growth of L. brevis and stimulated growth of P. membranifaciens, while the other strains remained unaffected. Beer chemistry was found to be affected by higher ethanol levels, which led to an increased extraction of wood-derived compounds. Furthermore, the distinct microbial communities also induced changes in the chemical composition of the beer samples, leading to concentration differences in beer- and wood-derived compounds like 4-ethyl guaiacol, 4-ethyl phenol, cis-oak lactone, vanillin, furfural and 5-methyl furfural. Altogether, our results indicate that wood-aging of beer is affected by biotic and abiotic parameters, influencing the quality of the final product. Additionally, this work provides a new, cost-effective approach to study the production of barrel-aged beers based on a simplified microbial community model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.