Interfacial interaction is one of the most important factors that affect the mechanical properties of the fiber reinforced composites. The effect of fabrics′ sizing removal from glass fibers’ surface by thermal treatment on the mechanical characteristics of polyethersulfone based composites at different fiber to polymer weight ratios was investigated. Three fiber to polymer weight ratios of 50/50, 60/40, and 70/30 were studied. Flexural and shear tests were carried out to illustrate the mechanical properties of the composites; the structure was studied using Fourier-transform infrared spectroscopy and scanning electron microscopy. It was shown that solution impregnation of glass fabrics with polyethersulfone before compression molding allows to achieve good mechanical properties of composites. The thermal treatment of glass fabrics before impregnation results in an increase in flexural and shear strength for all the composites due to the improvement of fiber–matrix interaction.
The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and shear tests were used to study the composites’ mechanical properties. A dynamic mechanical analysis (DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical properties of composites. The chemical structure of the composites was studied using IR-spectroscopy, and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30 (wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated composites enhanced as a result of removing the sizing coating during the thermal treatment of GF, which improved the properties of the preheated composites compared with the composites reinforced with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF surface in the preheated GF composites.
In this study, the mechanical and thermophysical properties of carbon fiber-reinforced polyethersulfone are investigated. To enhance the interfacial interaction between carbon fibers and the polymer matrix, the surface modification of carbon fibers by thermal oxidation is conducted. By means of AFM and X-ray spectroscopy, it is determined that surface modification changes the morphology and chemical composition of carbon fibers. It is shown that surface modification dramatically increases the mechanical properties of the composites. Thus, flexural strength and the E-modulus of the composites reinforced with modified fibers reached approximately 962 MPa and 60 GPa, respectively, compared with approximately 600 MPa and 50 GPa for the composites reinforced with the initial ones. The heat deflection temperatures of the composites reinforced with the initial and modified fibers were measured. It is shown that composites reinforced with modified fibers lose their stability at temperatures of about 211 °C, which correlates with the glass transition temperature of the PES matrix. The thermal conductivity of the composites with different fiber content is investigated in two directions: in-plane and transverse to layers of carbon fibers. The obtained composites had a relatively high realization of the thermal conductive properties of carbon fibers, up to 55–60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.