Purpose. Ensuring the determination of the basis weight of the textile fiber mass directly during the manufacturing process using an ultrasonic device equipped with non-contact ultrasonic sensors. In particular, show the effect of the basis weight of a textile fiber mass on the amplitude of probing vibrations in the measuring channel of an ultrasonic device. An amplitude control method is proposed, which is the basis of the operation of the ultrasonic device. It consists in irradiating the textile fiber mass, which moves relative to the scanning bracket with the sensors, and determining the basis weight of the fiber mass by reducing the amplitude of the ultrasonic waves in the measuring channel. The measurement results are processed with their subsequent digitization and computer analysis. It has been established that due to the passage and re-reflection of ultrasonic waves, which fall on two receivers with different vibration delays, it is possible to increase the accuracy of measurements of the average values of the basis weight of the textile fiber mass. Originality. In the general case, it is established that by passing and reflecting ultrasonic waves entering two receivers with different delay of oscillations, it is possible to increase the accuracy of measurements of average values of basis weight of textile fiber mass. The block diagram of the ultrasonic device for determination of basis weight of textile fiber mass is shown and its work is described. The main dependences on which the device system will determine the basis weight of the textile fiber mass are also given.
Purpose: of the article is to investigate the theoretical rules of thermal transformer eddy current converter (TTC) during the preparation of ecological monitoring of brewery sewage samples based on the implementation of contactless two-parameter eddy current method of testing of the specific electrical conductivity λt and the temperature t of the beer sewage sample. It should be noted that this makes it possible to simultaneously prevent the causes of beer sewage samples deviation from the specified environmental safety indicators and to take adjustments. Design/methodology/approach: The theory of TTC operation concerning the electrical and temperature characteristics testing of beer sewage samples has been further developed by implement new universal transformation functions Δφt = f (Gt) and Δφ = f (xt), which relate the normalized difference components of the converter signals to physical and chemical characteristics of the sample. Due to this, it is possible to simultaneously prevent the causes of beer sewage samples deviation from the specified ecological safety indicators and to take appropriate adjustments. Findings: The method of two-parameter measuring test of the specific electrical conductivity λt and the temperature t of the beer sewage sample was developed on the basis of new universal transformation functions. Analysing the numerical data of electrical conductivity λ, TDS and pH at the initial temperature t1 = 15°C, the alkaline nature of beer sewage was determined. Research limitations/implications: The frequency range of the magnetic field f = 80-100 MHz, it is difficult to maintain in laboratory conditions, so the proposed method requires the use of modern high-frequency equipment, the radius of the probe depends on the radius of the primary converter frame. And therefore is quite a complicate to find appropriate tank. Practical implications: is to determine the nature of beer sewage based on the results of electrical and temperature parameters measurements during implementing a two-parameter eddy current method, which allows to prevent the reasons for beer sewage samples deviations from the specified environmental safety measures and to take appropriate adjustments. An important practical result is also the determination of the signal components and the normalized characteristics of the primary eddy current converter with a sample of beer sewage. They allow to calculate, design and create multi-parameter automated devices for measuring test of the physicochemical parameters of beer sewage samples. In turn, as a result of the physicochemical composition analysis of the sample, improving the accuracy of measurements of physicochemical parameters - there is an opportunity to improve and create advanced methods of wastewater purification on a weak electrolytic basis. Originality/value: The article originality is the investigation of the theoretical rules of thermal TTC by implementing a new multi-parameter eddy current method of measuring the specific electrical conductivity λt and the temperature t of the beer sewage sample based on the implementation of universal transformation functions Δφt = f (Gt) and Δφ = f (xt) that relate the converter signals to the physicochemical characteristics of the beer sewage sample, which helps to prevent the causes of the beer sewage samples deviation from the specified environmental safety indicators and take appropriate adjustments.
Two main methods employed in designing knitted fabrics for production rely on a given surface density or on the basis weight (grams per square meter). The actual value of these parameters may differ. Normally, the actual basis weight of knitted fabrics is determined by weighing a sample of a certain width and length and subsequently performing the relevant conversion (ISO 3801:1977). This method involves a destruction or wasting of the material. A non-destructive ultrasonic method for determining the basis weight of textile materials was developed, which is based on a determination of the amplitude ratio of ultrasonic waves falling on the fabric and the waves passing through it. However, this method has limitations in determining the basis weight of textile materials with variable porosity, such as knitted fabrics. To improve the developed method, it is proposed to continue the measuring of an amplitude of the reflected wave from the fabric surface. In this case, it is possible to monitor the fabric porosity changes. If the distance and pore size of the controlled fabric have increased or decreased relative to the control sample, the amplitude and magnitude of the reflected wave (part of the reflected ultrasonic signal) changes and the ultrasonic device will be adapted to the fabric structure. Our studies have demonstrated the possibility of determining the fabric porosity by using an amplitude of the reflected ultrasonic wave from the fabric surface, which allows adaptively to determine the basis weight using an amplitude of transmitted ultrasonic wave. Further development of ultrasonic non-contact methods and relative devises is very important for production control.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.