Bioactive coatings on VT1-0 commercially pure titanium were formed by the plasma electrolytic oxidation (PEO). A study of the morphological features of coatings was carried out using scanning electron microscopy. A composition of formed coatings was investigated using energy-dispersive spectroscopy and X-ray diffractometry analysis. It was shown that PEO-coatings have calcium phosphate in their composition, which increases the bioactivity of the surface layer. Electrochemical properties of the samples were studied by potentiondynamic polarization and electrochemical impedance spectroscopy in different physiological media: simulated body fluid and minimum essential medium. The data of electrochemical studies indicate more than 15 times decrease in the corrosion current density for the sample with coating (5.0 × 10−9 A/cm2) as compared to the bare titanium (7.7 × 10−8 A/cm2). The formed PEO-layers have elastoplastic properties close to human bone (12–30 GPa) and a lower friction coefficient in comparison with bare metal. The wettability of PEO-layers increased. The contact angle for formed coatings reduced by more than 60° in comparison with bare metal (from 73° for titanium to 8° for PEO-coating). Such an increase in surface hydrophilicity contributes to the greater biocompatibility of the formed coating in comparison with commercially pure titanium. PEO can be prospective as a method for improving titanium surface bioactivity.
This paper presents the results of an evaluation of anti-icing properties of samples obtained by plasma electrolytic oxidation (PEO) with a subsequent application of superdispersed polytetrafluoroethylene (SPTFE) and polyvinylidenefluoride (PVDF). A combined treatment of the samples with SPTFE and PVDF is also presented. It is revealed that impregnation of a PEO layer with fluoropolymer materials leads to a significant increase in surface relief uniformity. Combined PVDF–SPFTE layers with a ratio of PVDF to SPTFE of 1:4 reveal the best electrochemical characteristics, hydrophobicity and icephobic properties among all of the studied samples. It is shown that the decrease in corrosion current density Ic for PVDF–SPFTE coatings is higher by more than five orders of magnitude in comparison with uncoated aluminum alloy. The contact angle for PVDF–SPFTE coatings attain 160.5°, which allows us to classify the coating as superhydrophobic with promising anti-icing performance. A treatment of a PEO layer with PVDF–SPFTE leads to a decrease in ice adhesion strength by 22.1 times compared to an untreated PEO coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.