Yersinia enterocolitica is one of the priority biological hazards in pork inspection. Persistence of the pathogen, including strains resistant to antimicrobials, should be evaluated in pigs from different housing systems for risk ranking of farms. In this 2019 study, tonsils were collected from 234 pigs, of which 69 (29.5%) were fattened on 3 big integrated farms, 130 (55.5%) on 10 medium-sized farms, and 35 (15%) on 13 small family farms. In addition, 92 pork cuts and minced meat samples from the same farms were tested for the presence of Y. enterocolitica using the culture method. Phenotypic and genetic characteristics of the isolates were compared with previously collected isolates from 2014. The overall prevalence of Y. enterocolitica in pig tonsils was 43% [95% CI 36.7–49.7]. In pigs from big integrated, medium-sized, and small family farms, the prevalence was 29%, 52%, and 40%, respectively. All retail samples of portioned and minced pork tested negative for pathogenic Y. enterocolitica, likely due to high hygienic standards in slaughterhouses/cutting meat or low sensitivity of culture methods in these matrices. The highest recovery rate of the pathogen from tonsils was found when alkali-treated PSB and CIN agar were combined. The biosecurity category of integrated and medium farms did not affect the differences in prevalence of Y. enterocolitica (p > 0.05), in contrast to family farms. Pathogenic ail-positive Y. enterocolitica biotype 4 serotype O:3 persisted in the tonsils of pigs regardless of the type of farm, slaughterhouse, and year of isolation 2014 and 2019. PFGE typing revealed the high genetic concordance (80.6 to 100%) of all the Y. enterocolitica 4/O:3 isolates. A statistically significant higher prevalence of multidrug-resistant Y. enterocolitica 4/O:3 isolates was detected in the tonsils of pigs from big integrated farms compared to the other farm types (p < 0.05), with predominant and increasing resistance to nalidixic acid, chloramphenicol, and streptomycin. This study demonstrated multidrug resistance of the pathogen in pigs likely due to more antimicrobial pressure on big farms, with intriguing resistance to some clinically relevant antimicrobials used in the treatment of yersiniosis in humans.
In this study, the presence of Listeria monocytogenes was assessed along the production process of fermented sausages in a small-scale facility. Following the isolation of the pathogen from the final product (ISO 11290-1), retrospective sampling was performed during the production of a new batch of sausages, including raw materials, casings, additives, sausage mixtures, sausages during fermentation, and environmental samples. L. monocytogenes was recovered from the following sampling points: the defrosting room and the cuttering, mixing, stuffing, and fermentation phases. Ten strains were isolated, molecularly confirmed as L. monocytogenes by means of a molecular detection system, and subjected to pulsed-field gel electrophoresis (PFGE) typing. On the basis of an unweighted pair group method with arithmetic mean (UPGMA) dendrogram from Ascl pulsotypes, the strains were indistinguishable (no band difference). The same pulsotypes of strains present in both batches of sausages, as well as in environmental samples, indicated the persistence of L. monocytogenes in the sausage production unit.
In this study, the dairy-originated bacteriocinogenic Enterococcus faecalis EF-101 strain was implemented in traditionally smoked Croatian home-made dry fermented sausages. During ripening, microbiological and physicochemical changes were observed, and the biogenic amines were monitored. The Enterococcus faecalis EF-101 count remained constant during the sausage ripening (10 5 CFU/g). There was no positive correlation of enterococci counts with cadaverine, histamine, tyramine, biogenic amines index, or total biogenic amines content in the sausages with added E. faecalis. The histamine and tyramine content correlated moderately with the lactic acid bacteria count in the control sausages. The total biogenic amines content was significantly higher (P<0.05) in the experimental sausages, however only on day 14 of ripening. The bacteriocinogenic strain of E. faecalis EF-101 reduced the histamine and cadaverine content, probably by reducing the aminogenic lactic acid bacteria population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.