We introduce landmark grammars , a new family of context-free grammars aimed at describing the HTML source code of pages published by large and templated websites and therefore at effectively tackling Web data extraction problems. Indeed, they address the inherent ambiguity of HTML, one of the main challenges of Web data extraction, which, despite over twenty years of research, has been largely neglected by the approaches presented in literature. We then formalize the Smallest Extraction Problem (SEP), an optimization problem for finding the grammar of a family that best describes a set of pages and contextually extract their data. Finally, we present an unsupervised learning algorithm to induce a landmark grammar from a set of pages sharing a common HTML template, and we present an automatic Web data extraction system. The experiments on consolidated benchmarks show that the approach can substantially contribute to improve the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.