The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
Aim To investigate the influence of tepuian geomorphology on species diversification in the Pantepui biogeographical region based on the phylogenetic relationships and divergence times of tepui‐endemic clades of stefania frogs (Stefania, Hemiphractidae). Location The ‘tepuis’ and uplands/lowlands of the Pantepui biogeographical region of northern South America, one of the least accessible and least studied areas in the world. Methods Two mitochondrial and two nuclear DNA sequences from 60 individuals of Stefania from 24 localities in Pantepui were employed to infer phylogenetic affinities and estimate divergence times within the genus using both concatenation and species tree analyses. Ancestral areas were inferred using multiple models in a common likelihood framework. Results Phylogenetic analyses revealed high diversity in the genus Stefania with 10 candidate species in the Eastern Pantepui District. Four strongly supported clades are recovered in the area, one being exclusively composed of microendemics on isolated tepui summits. Biogeographical analyses suggest episodes of fragmentation of widespread tepuian ancestors from the onset of diversification of the genus, estimated in the Oligocene (c. 26 Ma), therefore suggesting a neglected vicariant model of Pantepui evolution, the Plateau Theory. Main conclusions Although our results suggest that vicariance played an important role in the diversification of Stefania, speciation in Pantepui followed an intricate pattern implying multiple nonexclusive processes. Vicariance and dispersal likely influenced diversification patterns of the Pantepui fauna, possibly according to the following sequence: (1) Cenozoic vicariance; (2) reorganization of species diversity due to periods of climatic instability; (3) recent invasions (Pleistocene) of widespread upland taxa.
In early 2020, the rapid spread of the novel coronavirus disease 2019 (COVID-19) led multiple countries to introduce strict lockdown measures to contain the pandemic. Movement restrictions may have influenced the ability of the public to contribute to citizen science projects. We investigated how stay-at-home orders affected data submitted by birdwatchers in Italy, Spain and the United Kingdom (UK) to a widely-used citizen science platform, iNaturalist, depending on whether observations were collected in urban or non-urban areas. We found significant trends in the daily number of observations in all three countries, indicating a surge in urban observation during lockdowns. We found an increase in the mean daily number of urban observations during the lockdown in Italy and Spain, compared to previous years. The mean daily number of non-urban observations decreased in Italy and Spain, while remained similar to previous years in the UK. We found a general decrease of new records during the lockdowns both in urban and non-urban areas in all countries. Our results suggest that the citizen science community remained active during the lockdowns and kept reporting birds from home. However, limitations to movements may have hampered the possibility of birdwatchers to explore natural areas and collect new records. Our findings suggest that future research and conservation applications of citizen science data should carefully consider the bias and gaps in data series caused by the pandemic. Furthermore, our study highlights the potential of urban areas for nature activities, such as birdwatching, and its relevance for sustainable urban planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.