Using genome-wide association studies, 39 SNP markers likely tagging 21 different loci for carbon isotope ratio (δ (13) C) were identified in soybean. Water deficit stress is a major factor limiting soybean [Glycine max (L.) Merr.] yield. Soybean genotypes with improved water use efficiency (WUE) may be used to develop cultivars with increased yield under drought. A collection of 373 diverse soybean genotypes was grown in four environments (2 years and two locations) and characterized for carbon isotope ratio (δ(13)C) as a surrogate measure of WUE. Population structure was assessed based on 12,347 single nucleotide polymorphisms (SNPs), and genome-wide association studies (GWAS) were conducted to identify SNPs associated with δ(13)C. Across all four environments, δ(13)C ranged from a minimum of -30.55‰ to a maximum of -27.74‰. Although δ(13)C values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. Diversity analysis indicated that eight subpopulations could contain all individuals and revealed that within-subpopulation diversity, rather than among-subpopulation diversity, explained most (80%) of the diversity among the 373 genotypes. A total of 39 SNPs that showed a significant association with δ(13)C in at least two environments or for the average across all environments were identified by GWAS. Fifteen of these SNPs were located within a gene. The 39 SNPs likely tagged 21 different loci and demonstrated that markers for δ(13)C can be identified in soybean using GWAS. Further research is necessary to confirm the marker associations identified and to evaluate their usefulness for selecting genotypes with increased WUE.
A genome-wide association study explored the genetic basis of variation for drought tolerance and related traits in a Middle American diversity panel comprising 96 common bean (Phaseolus vulgaris L.) genotypes. The panel was grown under irrigated and rainfed conditions and single nucleotide polymorphism (SNP) data were used to explore the genetic diversity and ancestry of the panel. Varying levels of admixtures and distinctly divergent individuals were observed. Estimations of genome-wide heterozygosity revealed that, on average, greater diversity is present in individuals with Mesoamerica (3.8%) ancestry, followed by admixed individuals (2.3%). The race Durango had the lowest level of heterozygosity (1.4%). We report 27 significant marker-trait associations based on best linear unbiased predictors. These associations include seven markers for shoot biomass at harvest under irrigation and five markers under rainfed conditions on P. vulgaris (Pv) chromosome Pv11, two markers for shoot biomass at flowering under irrigation on Pv02 and Pv08, two markers for seed size under irrigated and rainfed conditions on Pv09, seven markers for lodging score under irrigation on Pv02 and Pv07, one marker for leaf elongation rate on Pv03 and one for wilting score on Pv11. Positional candidate genes, including Phvul.011G102700 on Pv11, associated with wilting, were identified. The SNP ss715639327 marker was located in the exon region of the PvSIP1;3 gene, which codes for an aquaporin associated with water movement in beans. Significant quantitative trait loci identified in this study could be used in marker-assisted breeding to accelerate genetic improvement of drought tolerance in common bean.
Nitrogen is a primary plant nutrient that plays a major role in achieving maximum economic yield. Insufficient availability most often limits soybean [Glycine max (L.) Merr.] crop growth. Symbiotic N 2 fixation in soybean is highly sensitive to limited water availability, and breeding for reduced N 2 fixation sensitivity to drought is considered an important objective to improve yields under drought. The objective of this study was to identify single nucleotide polymorphism (SNP) markers associated with N traits. A collection of 373 diverse soybean genotypes were grown in four field environments (2 yr and two locations) and characterized for N derived from atmosphere (Ndfa), N concentration ([N]), and C/N ratio. The population structure of 373 soybean genotypes was assessed based on 31,145 SNPs and genome-wide association analysis using a unified mixed model identified SNPs associated with Ndfa, [N], and C/N ratio. Although the Ndfa, [N], and C/N ratio values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. While numerous SNPs were identified by association analysis for each trait in only one of the four environments, 17, 19, and 24 SNPs showed a significant association with Ndfa, [N], and C/N ratio, respectively, in at least two environments as well as with the average across all four environments. These markers represent an important resource for pyramiding favorable alleles for drought tolerance and for identifying extremes for comparative physiological studies. Soybean is an important source of high-quality, inexpensive protein, oil, and vitamins. A primary advantage of legume crops, and of soybean in particular, is their symbiotic association with rhizobial strains resulting in N 2 fixation that eliminates reliance on N fertilizer. The fixation of N 2 , therefore, decreases fertilizer costs and provides a sustainable plant N supply without environmental concerns of nitrate contamination of ground water or greenhouse gas emissions of nitrous oxides that are associated with N fertilizer losses (Masclaux-Daubresse et al., 2010;Snyder et al., 2014). The contribution of N 2 fixation for soybean growth and yield is affected by environmental and genetic factors. Inorganic and mineralized N in the soil decrease nodule formation and N 2 fixation (Harper, 1987). On fertile soils of the US Midwest that have large amounts of organic matter and large pools of mineralized
Ureides are the N-rich products of N-fixation that are transported from soybean nodules to the shoot. Ureides are known to accumulate in leaves in response to water-deficit stress, and this has been used to identify genotypes with reduced N-fixation sensitivity to drought. Our objectives in this research were to determine shoot ureide concentrations in 374 Maturity Group IV soybean accessions and to identify genomic regions associated with shoot ureide concentration. The accessions were grown at two locations (Columbia, MO, and Stuttgart, AR) in 2 yr (2009 and 2010) and characterized for ureide concentration at beginning flowering to full bloom. Average shoot ureide concentrations across all four environments (two locations and two years) and 374 accessions ranged from 12.4 to 33.1 µmol g−1 and were comparable to previously reported values. SNP–ureide associations within and across the four environments were assessed using 33,957 SNPs with a MAF ≥0.03. In total, 53 putative loci on 18 chromosomes were identified as associated with ureide concentration. Two of the putative loci were located near previously reported QTL associated with ureide concentration and 30 loci were located near genes associated with ureide metabolism. The remaining putative loci were not near chromosomal regions previously associated with shoot ureide concentration and may mark new genes involved in ureide metabolism. Ultimately, confirmation of these putative loci will provide new sources of variation for use in soybean breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.