Laser powder bed fusion additive manufacturing is among the most used industrial processes, allowing for the production of customizable and geometrically complex parts at relatively low cost. Although different aspects of the powder spreading process have been investigated, questions remain on the process repeatability on the actual beam–powder bed interaction. Given the influence of the formed bed on the quality of the final part, understanding the spreading mechanism is crucial for process optimization. In this work, a Discrete Element Method (DEM) model of the spreading process is adopted to investigate the spreading process and underline the physical phenomena occurring. With parameters validated through ad hoc experiments, two spreading velocities, accounting for two different flow regimes, are simulated. The powder distribution in both the accumulation and deposition zone is investigated. Attention is placed on how density, effective layer thickness, and particle size distribution vary throughout the powder bed. The physical mechanism leading to the observed characteristics is discussed, effectively defining the window for the process parameters.
Powder bed additive manufacturing allows for the production of fully customizable parts and is of great interest for industrial applications. However, the repeatability of the parts and the uniformity of the mechanical properties are still an issue. More specifically, the physical mechanism of the spreading process of the powders, which significantly affects the characteristics of the final part, is not completely understood. In powder bed fusion technologies, the spreading is performed by a device, typically a roller or a blade, that collects the powders from the feedstock and successively deposits them in a layer of several dozens of microns that is then processed with a laser beam. In this work, an experimental approach is developed and employed to study the powder spreading process and analyze in detail the motion of the powders from the accumulation zone to the deposition stage. The presented experiments are carried out on a home-made device that reproduces the spreading process and enables the measurement of the characteristics of the powder bed. Furthermore, the correlation with the process parameters, e.g., the speed of the spreading device, is also investigated. These results can be used to obtain useful insights on the optimal window for the process parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.