Elimination of the 5' cap of eukaryotic mRNAs, known as decapping, is considered to be a crucial, irreversible and highly regulated step required for the rapid degradation of mRNA by Xrn1, the major cytoplasmic 5'-3' exonuclease. Decapping is accomplished by the recruitment of a protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor. However, this complex has a low intrinsic enzymatic activity and requires several accessory proteins such as the Lsm1-7 complex, Pat1, Edc1-Edc2 and/or Edc3 to be fully active. Here we present the crystal structure of the active form of the yeast Kluyveromyces lactis Dcp1-Dcp2 enzyme bound to its product (mGDP) and its potent activator Edc3. This structure of the Dcp1-Dcp2 complex bound to a cap analog further explains previously published data on substrate binding and provides hints as to the mechanism of Edc3-mediated Dcp2 activation.
During translation elongation decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons have recently received increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Here, we present the crystal structure of Dehalococcoides mccartyi Elp3 (DmcElp3) at 2.15 Å resolution. Our results reveal the unexpected arrangement of Elp3 lysine acetyl transferase (KAT) and radical S-adenosyl-methionine (SAM) domains that share a large interface to form a composite active site and tRNA binding pocket with an iron sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirm the relevance of our findings for eukaryotic Elp3s and for understanding Elongator’s role in the onset of various neurodegenerative diseases and cancer in humans.
SummaryThe presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5Ј-3Ј exoand endonucleolytic activity. This enzyme coexists with RNase E in this organism, a configuration that enabled us to study how these two key nucleases collaborate. We demonstrate that RNase E is responsible for the processing of the furA-katG transcript in M. smegmatis and that both RNase E and RNase J are involved in the 5Ј end processing of all ribosomal RNAs. In contrast to B. subtilis, the activity of RNase J, although required in vivo for 23S rRNA maturation, is not essential in M. smegmatis. We show that the pathways for ribosomal RNA maturation in M. smegmatis are quite different from those observed in E. coli and in B. subtilis. Studying organisms containing different combinations of key ribonucleases can thus significantly broaden our view of the possible strategies that exist to direct RNA metabolism.
The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme. Structures of Pat1-HLM complexes reveal the basis for HLM recognition by Pat1. We also identify a HLM present in yeast Xrn1, the main 5'-3' exonuclease involved in mRNA decay. We show further that the ability of yeast Pat1 to bind HLMs is required for efficient growth and normal mRNA decay. Overall, our analyses indicate that yeast Pat1 uses a single binding surface to successively recruit several mRNA decay factors and show that interaction between those factors is highly polymorphic between species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.