Abstract:The evidence of increased crossing over rate in tomato hybrids infected with TAV (Tomato aspermy virus), PVX (Potato virus X), TMV (Tobacco mosaic virus), TMV+PVX indicates the recombinogenic effect of viral infection. Cytological studies of the early diakinesis in healthy and virus-infected tomato revealed significant changes in chiasma number and position. The most significant changes were established for bivalents with two interstitial chiasmata and with one terminal and one interstitial. The data obtained indicate redistribution of the chiasmata position and induction of additional exchanges. The virus-induced recombination is segment-specific and depends on the host plant genotype, virus infection and the interaction between them.
A comparative study of the effect of barley stripe mosaic virus (BSMV) and gamma irradiation on mitotic divisions in barley (Hordeum vulgare L.) roots was performed by evaluating the mitotic index (MI), micronucleus (MN) frequency and sister chromatid exchanges (SCE). Results indicate that, similarly to gamma irradiation at doses of 100, 150 and 250 Gy, BSMV reduces the mitotic activity, increases the micronucleus frequency and the rate of SCE and promotes the formation of C-metaphases. In root meristematic cells of the three barley cultivars studied (Galactic, Sonor and Unirea), the mitotic index of infected plants was found to be 52.5, 54.48 and 64.17%, respectively, lower than the uninfected control. An increase in frequency of sister chromatid exchanges was observed in all the experimental variants. In treatments involving viral infection alone or in combination with gamma irradiation chromosomes with three and more chromatid exchanges were observed, while their percentage in the control or in treatments with gamma irradiation alone was reduced. The results of the study indicate that in plants derived from irradiated seeds, BSMV produces an effect that is correlated nonlinearly with the radiation dose applied. Cytological analysis of mitotic divisions in barley roots revealed the genotoxicity of BSMV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.