The results of modeling the dynamic recrystallization of steels during hot deformation on the basis of information on their static recrystallization kinetics are presented. The results of predicting the amount of deformation accumulated in the metal under the conditions of dynamic recrystallization development were used for calculating the metal flow curves. The model was validated by comparing the calculated flow curves with the experimental flow curves determined on the 1045 steel by means of hot torsion tests carried out from 1000 °C to 1100 °C and at strain rates from 0.1 to 10 s‒1. The difference between the experimental and predicted flow stress values did not exceed 6%. The influence of the chemical element content in low-alloyed steels on the magnitude of the critical strain for the initiation of dynamic recrystallization is assessed. The method of predicting the kinetics of dynamic recrystallization by recalculating the kinetics of static recrystallization to the conditions of continuous growth of the strain degree during metal deformation implemented in the model can be used in designing and optimizing technologies associated with metal hot forming processes.
The article considers dependence of the critical deformation for dynamic recrystallization in low-alloy steels on the chemical composition. The article shows an improved model for forecasting the critical deformation for dynamic recrystallization, which allows considering the content of chemical elements in steel. The article analyzes the influence of the chemical composition of low-alloy steels on the value of critical deformation during hot deformation. The article shows that the developed mathematical model can be used in the system of automated control of the structure and properties of steels during hot rolling to forecast conditions for the development of dynamic recrystallization and to select the optimal chemical composition of steels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.