Being well-established in advanced chronic obstructive pulmonary disease (COPD), skeletal muscle dysfunction and its underlying pathology have been scarcely investigated in patients with mild-to-moderate airflow obstruction. We hypothesized that a loss of oxidative phenotype (oxphen) associated with decreased endurance is present in the skeletal muscle of patients with mild-to-moderate COPD. In quadriceps muscle biopsies from 29 patients with COPD (forced expiratory volume in 1 s [FEV1] 58 ± 16%pred, body mass index [BMI] 26 ± 4 kg/m(2)) and 15 controls (BMI 25 ± 3 kg/m(2)) we assessed fiber type distribution, fiber cross-sectional areas (CSA), oxidative and glycolytic gene expression, OXPHOS protein levels, metabolic enzyme activity, and levels of oxidative stress markers. Quadriceps function was assessed by isokinetic dynamometry, body composition by dual-energy X-ray absorptiometry, exercise capacity by an incremental load test, and physical activity level by accelerometry. Compared with controls, patients had comparable fat-free mass index, quadriceps strength, and fiber CSA, but quadriceps endurance was decreased by 29% (P = 0.002). Patients with COPD had a clear loss of muscle oxphen: a fiber type I-to-II shift, decreased levels of OXPHOS complexes IV and V subunits (47% and 31%, respectively; P < 0.05), a decreased ratio of 3-hydroxyacyl-CoA dehydrogenase/phosphofructokinase (PFK) enzyme activities (38%, P < 0.05), and decreased peroxisome proliferator-activated receptor-γ coactivator-1α (40%; P < 0.001) vs. increased PFK (67%; P < 0.001) gene expression levels. Within the patient group, markers of oxphen were significantly positively correlated with quadriceps endurance and inversely with the increase in plasma lactate relative to work rate during the incremental test. Levels of protein carbonylation, tyrosine nitration, and malondialdehyde protein adducts were comparable between patients and controls. However, among patients, oxidative stress levels were significantly inversely correlated with markers of oxphen and quadriceps endurance. Reduced muscle endurance associated with underlying loss of muscle oxphen is already present in patients with mild-to-moderate COPD without muscle wasting.
Even though moderate-to-high intensity resistance training does not seem be harmful for patients with CHF, the current peer-reviewed evidence seems inadequate to generally recommend incorporation of resistance training into exercise-based rehabilitation programmes for patients with CHF.
In COPD patients, mild-to-moderate COPD, per se, does not enhance ATI or its contribution to systemic inflammation compared with in well-matched healthy control subjects. However, to our knowledge, our study provides a first indication for a possible role of ATMs in the systemic inflammatory response in COPD that requires additional investigation. This trial was registered at www.trialregister.nl as NTR1402.
Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD) are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen). Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65±7 yrs, FEV1 59±16% predicted) and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.