The aim of this work is to study the possibility of using the products of aminolytic destruction of polyethylene terephthalate (PET) and their derivatives in polymer composite materials with vibration-absorbing properties, which provide effective damping of vibrations of technogenic and natural origin in a wide temperature and frequency range. The paper considers a modern method of recycling PET waste with a mixture of amino alcohols - monoethanolamine and triethanolamine, taken in two different ratios. As a result of the destruction reaction, terephthalic acid diamide (N, N -bis (2-hydroxyethyl) terephthalamide) is formed. To accelerate the destruction process, microwave radiation of various powers of 200, 540 and 700 watts was used. The optimal conditions for aminolytic decomposition of PET were determined: the time and power of microwave radiation with PET conversion up to 95% and the yield of the target product (terephthalic acid diamide) 80-85%. The destruction process was carried out according to a closed cycle of using reagents, without the use of catalysts and at atmospheric pressure, which to a certain extent reduces the energy consumption and increases the environmental friendliness of this method of PET decomposition. The aminolytic degradation product of PET (terephthalic acid diamide) was used as a monomer in the polycondensation reaction to obtain a new oligomer (terephthalic acid oligoesteramide). The degree of polymerisation (n) is in this case 7 to 11 (number of chain links). The obtained oligomer and the PET degradation product were investigated as new components in elastomeric compositions based on chloroprene rubber and in compositions based on thermoplastic elastomers. It has been demonstrated that the introduction of an oligomer based on a PET degradation product reduces the viscosity of elastomeric compositions by 25-35%. The study was supported by a grant from the Russian Science Foundation No. 21-79-00301, https://rscf.ru/project/21-79-00301/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.