Heather (Calluna vulgaris (L.) Hull.) is noted for a diverse chemical composition and a broad range of biological activity. The current study was aimed at monitoring changes in the accumulation of certain groups of phenolic compounds in various organs of heather (leaves, stems, roots, rhizomes, flowers, and seeds) at different growth stages (vegetative, floral budding, flowering, and seed ripening) as well as studying antioxidant (employing the DPPH and FRAP assays) and antibacterial activity of its extracts. The highest total amount of phenolic compounds, tannins, flavonoids, hydroxycinnamic acids, and proanthocyanidins was detected in leaves and roots at all growth stages, except for the flowering stage. At the flowering stage, the highest content of some groups of phenolic compounds (flavonoids, proanthocyanidins, and anthocyanins) was observed in flowers. Highest antioxidant activity was recorded for the flower extracts (about 500 mg of ascorbic acid equivalents per gram according to the DPPH assay) and for the leaf extract at the ripening stage (about 350 mg of ascorbic acid equivalents per gram according to the FRAP assay). Strong correlation was noted between antioxidant activity (DPPH) and the content of anthocyanins (r = 0.75, p ≤ 0.01) as well as between antioxidant activity (FRAP) and the total content of phenolic compounds (r = 0.77, p ≤ 0.01). Leaf extracts and stem extracts turned out to perform antibacterial action against both gram-negative and gram-positive bacteria, whereas root extracts appeared to be active only against B. subtilis, and rhizome extracts against E. coli.
Meadowsweet (Filipendula ulmaria (L.) Maxim.) has been widely used in the treatment of various diseases. The pharmacological properties of meadowsweet are derived from the presence of phenolic compounds of a diverse structure in sufficiently large quantities. The purpose of this study was to examine the vertical distribution of individual groups of phenolic compounds (total phenolics, flavonoids, hydroxycinnamic acids, catechins, proanthocyanidins, and tannins) and individual phenolic compounds in meadowsweet and to determine the antioxidant and antibacterial activity of extracts from various meadowsweet organs. It was found that the leaves, flowers, fruits, and roots of meadowsweet are characterized by a high total phenolics content (up to 65 mg g−1). A high content of flavonoids was determined in the upper leaves and flowers (117–167 mg g−1), with high contents of hydroxycinnamic acids in the upper leaves, flowers, and fruits (6.4–7.8 mg g–1); high contents of catechins and proanthocyanidins in the roots (45.1 and 3.4 mg g–1, respectively); and high tannin content in the fruits (38.3 mg g–1). Analysis of extracts by high-performance liquid chromatography (HPLC) showed that the qualitative and quantitative composition of individual phenolic compounds in various parts of the meadowsweet varied greatly. Among the flavonoids identified in meadowsweet, quercetin derivatives dominate, namely quercetin 3-O-rutinoside, quercetin 3-β-d-glucoside, and quercetin 4′-O-glucoside. Quercetin 4′-O-glucoside (spiraeoside) was found only in the flowers and fruits. Catechin was identified in the leaves and roots of meadowsweet. The distribution of phenolic acids across the plant was also uneven. In the upper leaves, a higher content of chlorogenic acid was determined, and in the lower leaves, a higher content of ellagic acid determined. In flowers and fruits, a higher contents of gallic, caftaric, ellagic, and salicylic acids were noted. Ellagic and salicylic acids were also dominant among phenolic acids in the roots. Based on the results of the analysis of antioxidant activity in terms of the ability to utilize the radicals of 2,2-diphenyl-1-picrylhydrazine (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazolino-6-sulfonic acid) (ABTS) and in terms of iron-reducing ability (FRAP), the upper leaves, flowers, and fruits of meadowsweet can be considered plant raw materials suitable to obtain extracts with high antioxidant activity. Extracts of plant fruits and flowers also showed high antibacterial activity against the bacteria Bacillus subtilis and Pseudomonas aeruginosa.
Natural habitats, including extreme ones, are potential sources of new antimicrobial compound producers, such as bacteriocins and enzymes, capable of degrading the matrix polysaccharides of bacterial biofilms. This study aimed to investigate biodiversity and evaluate the antibacterial potential of psychrophilic and psychrotrophic microbial communities of the flooded Walter amber quarry (Kaliningrad region, Russia). As a result of 16S rDNA high-throughput profiling, 127 genera of bacteria belonging to 12 phyla of bacteria were found in sediment samples: Acidobacteria sp., Actinobacteria sp., Armatimonadetes sp., Bacteroidetes sp., Chloroflexi sp., Cyanobacteria sp., Firmicutes sp., Gemmatimonadetes sp., Planctomycetes sp., Proteobacteria sp., Tenericutes sp., and Verrucomicrobia sp. The dominant bacteria groups were the families Ruminococcaceae and Lachnospiraceae, belonging to the order Clostridiales phylum Firmicutes. Analysis of enrichment cultures obtained from sediments showed the presence of antibacterial and cellulolytic activity. It seems likely that the bacteria of the studied communities are producers of antimicrobial compounds and have the potential for biotechnological use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.