Flow cytometry is one of the most important technologies for high-throughput single-cell analysis. Fluorescent labeling acts as the primary approach for cellular analysis in flow cytometry. Nevertheless, the fluorescent tags are not applicable to all cases, especially to small molecules, for which labeling may significantly perturb the biological functionality. Spontaneous Raman scattering flow cytometry offers the capability to non-invasively detect chemical contents of cells but suffers from slow data acquisition. In order to achieve label-free high-throughput single-particle analysis using Raman scattering, we developed a 32-channel multiplex stimulated Raman scattering flow cytometry (SRS-FC) technique that can measure chemical contents of single particles at a speed of 5 μs per Raman spectrum. Using mixed polymer beads, we demonstrate the discrimination of different particles at a throughput of up to 11,000 particles per second. This is a four orders of magnitude improvement in throughput compared to conventional spontaneous Raman flow cytometry. As a proof of concept, we show the differentiation of 3T3-L1 cells at different states by SRS-FC according to the difference in cellular chemical content. The SRS-FC technique opens new opportunities for high-throughput and high-content chemical analysis of live cells in a label-free manner.
Despite recent progress in cell-analysis technology, rapid classification of cells remains a very difficult task. Among the techniques available, flow cytometry (FCM) is considered especially powerful, because it is able to perform multiparametric analyses of single biological particles at a high flow rate-up to several thousand particles per second. Moreover, FCM is nondestructive, and flow cytometric analysis can be performed on live cells. The current limit for simultaneously detectable fluorescence signals in FCM is around 8-15 depending upon the instrument. Obtaining multiparametric measurements is a very complex task, and the necessity for fluorescence spectral overlap compensation creates a number of additional difficulties to solve. Further, to obtain wellseparated single spectral bands a very complex set of optical filters is required. This study describes the key components and principles involved in building a next-generation flow cytometer based on a 32-channel PMT array detector, a phase-volume holographic grating, and a fast electronic board. The system is capable of full-spectral data collection and spectral analysis at the single-cell level. As demonstrated using fluorescent microspheres and lymphocytes labeled with a cocktail of antibodies (CD45/FITC, CD4/PE, CD8/ECD, and CD3/Cy5), the presented technology is able to simultaneously collect 32 narrow bands of fluorescence from single particles flowing across the laser beam in \5 ls. These 32 discrete values provide a proxy of the full fluorescence emission spectrum for each single particle (cell). Advanced statistical analysis has then been performed to separate the various clusters of lymphocytes. The average spectrum computed for each cluster has been used to characterize the corresponding combination of antibodies, and thus identify the various lymphocytes subsets. The powerful data-collection capabilities of this flow cytometer open up significant opportunities for advanced analytical approaches, including spectral unmixing and unsupervised or supervised classification. ' 2011 International Society for Advancement of Cytometry Key terms hyperspectral cytometry; flow cytometry; next-generation instruments FLOW cytometry (FCM) is a very powerful cell-analysis technique, applied in various fields of life science ranging from basic cell biology to genetics, immunology, molecular biology, microbiology, plant cell biology, and environmental science (1). FCM uses optical properties of biological particles and makes analysis possible at the single-cell level. Forward-angle light scatter (size-related) and side-angle light scatter (shape-and structure-related) as well as various fluorescence emissions are collected following illumination/excitation (usually by one or several lasers). The data are collected, digitized, and stored on a computer where they are further processed to discriminate populations of particles (cells) with similar characteristics.Detection systems used in current commercial instruments are almost all based on a simple con...
SummaryThe three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water‐ and seafood‐related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label‐free forward light‐scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635 nm laser beam and scatter‐image signatures were acquired using a CCD (charge‐coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light‐scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light‐scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light‐scatter information provided classification in 1−2 min with an accuracy of 99%. The light‐scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non‐culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6 h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ∼ 12 h, the light‐scattering sensor successfully detected V. cholerae, V. parahaemolyticus and V. vulnificus present in oyster or water samples in 18 h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates.
A recently introduced technique for pathogen recognition called BARDOT (BActeria Rapid Detection using Optical scattering Technology) belongs to the broad class of optical sensors and relies on forward-scatter phenotyping (FSP). The specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and serovar. The notable similarity between FSP technology and spectroscopies is their reliance on statistical machine learning to perform recognition. Currently used methods utilize traditional supervised techniques which assume completeness of training libraries. However, this restrictive assumption is known to be false for most experimental conditions, resulting in unsatisfactory levels of accuracy, poor specificity, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates application of the BARDOT system to classify bacteria belonging to the Salmonella class in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated detection of unknown bacterial classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.