Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.
Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA-and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
The synthesis of native-sized proteins is a pre-requisite for exploiting the potential of spider silk as a bio-based material. The unique properties of spider silk, such as extraordinary tensile strength and elasticity, result from the highly repetitive nature of spider silk protein motifs. The present report describes the combination of spider silk flagelliform protein (FLAG) production in the endoplasmic reticulum of tobacco plant leaf cells with an intein-based posttranslational protein fusion technology. The repeated ligation of FLAG monomers resulted in the formation of large multimers. This method avoids the need for highly repetitive transgenes, which may result in a higher genetic and transcriptional stability. Here we show, for the first time, the production of synthetic, high molecular weight spider silk proteins larger than 250 kDa based on the assembly of protein monomers via intein-mediated trans-splicing in planta. The resulting multimeric structures form microfibers, thereby demonstrating their great potential as a biomaterial.
SummaryIn the last two decades it was shown that plants have a great potential for production of specific heterologous proteins. But high cost and inefficient downstream processing are a main technical bottleneck for the broader use of plant-based production technology especially for protein-based products, for technical use as fibres or biodegradable plastics and also for medical applications. High-performance fibres from recombinant spider silks are, therefore, a prominent example. Spiders developed rather different silk materials that are based on proteins. These spider silks show excellent properties in terms of elasticity and toughness. Natural spider silk proteins have a very high molecular weight, and it is precisely this property which is thought to give them their strength. Transgenic plants were generated to produce ELPylated recombinant spider silk derivatives. These fusion proteins were purified by Inverse Transition Cycling (ITC) and enzymatically multimerized with transglutaminase in vitro. Layers produced by casting monomers and multimers were characterized using atomic force microscopy (AFM) and AFM-based nanoindentation. The layered multimers formed by mixing lysine-and glutamine-tagged monomers were associated with the highest elastic penetration modulus.
Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.