Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2 , 3 and etiologically related 4 , 5 behaviors that have been resistant to gene discovery efforts 6 – 11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.
Smoking is a leading cause of preventable death, causing approximately five million premature deaths world-wide each year 1, 2 . Evidence for genetic influence on smoking behaviour and nicotine dependence (ND) 3-8 has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important for public health reasons 9, 10 . Smoking is the major risk factor for lung cancer (LC) [11][12][13][14] , and one of the main risk factors for peripheral arterial disease (PAD) [15][16][17] . We have identified a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking-related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in 15,771 smokers (P=6×10 −20 ). The same variant associated with ND in a previous genome-wide association study using low quantity smokers as controls (OR=1.3, P=1×10 −3 ) 18,19 , and with a similar approach we observe a highly significant association with ND (OR =1.40, P=7×10 −15 ). Comparison of LC (N=1,024) and PAD (N= 2,738) cases with about 30,000 population controls each showed that the variant confers risk of LC (OR=1.31, P=1.5×10 −8 ) and PAD (OR=1.19, P=1.4×10 −7 ). The findings highlight the role of nicotine addiction in the pathogenesis of other serious diseases and provide a case study of the role of active gene-environment correlation 20 in the pathogenesis of disease.To perform a genome-wide association (GWA) study of smoking quantity (SQ), we utilised questionnaire data limited to basic questions on smoking behaviour that were available for a large number of lifetime smokers. The GWA scan comprises 10,995 Icelandic smokers who Reprints and permissions information is available at www.nature.com/reprints.
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus ( FOXP2 , lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10 −9 ) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2 , lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10 −9 ). Cannabis use disorder and cannabis use were genetically correlated ( r g 0·50, p=1·50 × 10 −21 ), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Serv...
We use polygenic risk scores (PRSs) for schizophrenia (SCZ) and bipolar disorder (BPD) to predict smoking, and addiction to nicotine, alcohol or drugs in individuals not diagnosed with psychotic disorders. Using PRSs for 144 609 subjects, including 10 036 individuals admitted for in‐patient addiction treatment and 35 754 smokers, we find that diagnoses of various substance use disorders and smoking associate strongly with PRSs for SCZ (P = 5.3 × 10−50–1.4 × 10−6) and BPD (P = 1.7 × 10−9–1.9 × 10−3), showing shared genetic etiology between psychosis and addiction. Using standardized scores for SCZ and BPD scaled to a unit increase doubling the risk of the corresponding disorder, the odds ratios for alcohol and substance use disorders range from 1.19 to 1.31 for the SCZ‐PRS, and from 1.07 to 1.29 for the BPD‐PRS. Furthermore, we show that as regular smoking becomes more stigmatized and less prevalent, these biological risk factors gain importance as determinants of the behavior.
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1–4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.