Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl− secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA4 is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA4 are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA4 produced a rapid and transient increase in intracellular Ca2+. We have investigated, the effect of LXA4 on Cl− secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA4 stimulated a rapid intracellular Ca2+ increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA4 stimulated whole-cell Cl− currents which were inhibited by NPPB (calcium-activated Cl− channel inhibitor), BAPTA-AM (chelator of intracellular Ca2+) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA4 increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA4 effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl− secretion. The LXA4 stimulation of intracellular Ca2+, whole-cell Cl− currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA4 in the stimulation of intracellular Ca2+ signalling leading to Ca2+-activated Cl− secretion and enhanced ASL height in non-CF and CF bronchial epithelia.
In cystic fibrosis (CF), the airway surface liquid (ASL) height is reduced as a result of impaired ion transport, which favors bacterial colonization and inflammation of the airway and leads to progressive lung destruction. Lipoxin (LX)A4, which promotes resolution of inflammation, is inadequately produced in the airways of patients with CF. We previously demonstrated that LXA4 stimulates an ASL height increase and epithelial repair. Here we report the molecular mechanisms involved in these processes. We found that LXA4 (1 nM) induced an apical ATP release from non-CF (NuLi-1) and CF (CuFi-1) airway epithelial cell lines and CF primary cultures. The ATP release induced by LXA4 was completely inhibited by antagonists of the ALX/FPR2 receptor and Pannexin-1 channels. LXA4 induced an increase in intracellular cAMP and calcium, which were abolished by the selective inhibition of the P2RY11 purinoreceptor. Pannexin-1 and ATP hydrolysis inhibition and P2RY11 purinoreceptor knockdown all abolished the increase of ASL height induced by LXA4. Inhibition of the A2b adenosine receptor did not affect the ASL height increase induced by LXA4, whereas the PKA inhibitor partially inhibited this response. The stimulation of NuLi-1 and CuFi-1 cell proliferation, migration, and wound repair by LXA4 was inhibited by the antagonists of Pannexin-1 channel and P2RY11 purinoreceptor. Taken together, our results provide evidence for a novel role of LXA4 in stimulating apical ATP secretion via Pannexin-1 channels and P2RY11 purinoreceptors activation leading to an ASL height increase and epithelial repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.