In this paper, photocatalytic degradation of commercial textile azo dyes catalyzed by titanium dioxide and modified titanium dioxide with Ag metal (1% w/w) in aqueous solution under irradiation with a 400 W high-pressure mercury lamp is reported. The effect of various parameters such as irradiation time of UV light, amount of photocatalyst, flow rate of oxygen, pH and temperature for the Ag-TiO 2 photocatalyst were investigated. Kinetic investigations of photodegradation indicated that reactions obey improved Langmuir-Hinshelwood model and pseudo-first-order law. The rate constant studies of photocatalytic degradation reactions for Ag-TiO 2 and TiO 2 photocatalysts indicated that in all cases the rate constant of the reaction for Ag-TiO 2 was higher than that of TiO 2 .
In this work, binding of two water soluble Schiff base complexes: Bis sodium (5-sulfosalicylaldehyde) o-phenylendiiminato) Manganese (III) acetate (Salophen complex) and Bis sodium (5-sulfosalicylaldehyde) 1, 2 ethylendiiminato) Manganese (III) acetate (Salen complex) with calf thymus (ct) DNA were investigated by using different spectroscopic and electrometric techniques including UV-vis, Circular dichroism (CD) and fluorescence spectroscopy, viscommetry and cyclic voltammetry (CV). Both complexes have shown a hyperchromic and a small bathochromic shift in the visible region spectra. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by the addition of the two Schiff base complexes indicating that they displace EB from its binding site in DNA. Moreover structural changes in the CD spectra and an increase in the CV spectra with addition of DNA were observed. The results show that both complexes bind to DNA. The binding constants have been calculated using fluorescence data for two complexes also K(b) was calculated with fluorescence Scatchard plot for Salophen. Ultimately, the experimental results show that the dominant interactions are electrostatic while binding mode is surface binding then followed by hydrophobic interactions in grooves in high concentration of complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.