Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/catenin, TGF- and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
DNA methylation is associated with age. The deviation of age predicted from DNA methylation from actual age has been proposed as a biomarker for ageing. However, a better prediction of chronological age implies less opportunity for biological age. Here we used 13,661 samples (from blood and saliva) in the age range of 2 to 104 years from 14 cohorts measured on Illumina HumanMethylation450/EPIC arrays to perform prediction analyses. We show that increasing the sample size achieves a smaller prediction error and higher correlations in test datasets. We demonstrate that smaller prediction errors provide a limit to how much variation in biological ageing can be captured by methylation and provide evidence that age predictors from small samples are prone to confounding by cell composition. Our predictor shows a similar or better performance in non-blood tissues including saliva, endometrium, breast, liver, adipose and muscle, compared with Horvath’s across-tissue age predictor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.