The immunological basis by which a mother tolerates her semi-allogeneic fetus remains poorly understood. Several mechanisms are likely to contribute to this phenomenon including active immune regulation by regulatory T cells. In this article, we report that human placental trophoblasts activate a clonal population of CD8+ T cells with regulatory function. These cells are not MHC class I restricted, but require costimulation through a member of the carcinoembryonic Ag family present on early gestation trophoblasts. These regulatory T cells express the mucosal markers CD101 and CD103 and display selective usage of the TCR gene Vβ9. CD8+ T cells isolated from the peripheral blood of pregnant mothers (16–28 wk) also demonstrate expansions in the same Vβ family (Vβ9), signaling a possible role for these cells in preventing fetal rejection in vivo. We have previously characterized a subset of CD8+ regulatory T cells activated by the combination of the nonclassical class I molecule CD1d and a costimulatory molecule of the carcinoembryonic Ag family present on the intestinal epithelium. These data support the concept that distinct regulatory T cell populations exist at different sites and may be regulated locally by unique restriction elements, costimulatory signals, and Ags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.