Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4 interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.
Src-homology 3 (SH3) domains mediate signal transduction by binding to proline-rich motifs in target proteins. We have determined the high-resolution NMR structure of the complex between the amino-terminal SH3 domain of GRB2 and a ten amino acid peptide derived from the guanine nucleotide releasing factor Sos. The NMR data show that the peptide adopts the conformation of a left-handed polyproline type II helix and interacts with three major sites on the SH3 domain. The orientation of the bound peptide is opposite to that of proline-rich peptides bound to the SH3 domains of Abl, Fyn and p85.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.