Purpose In late 2019, the SARS-CoV-2 virus spread worldwide. The virus has high rates of proliferation and causes severe respiratory symptoms, such as pneumonia. The standard diagnostic method for pneumonia is chest X-ray image. There are many advantages to using COVID-19 diagnostic X-rays: low cost, fast, and widely available. Methods We propose an intelligent system to support diagnosis by X-ray images. We tested Haralick and Zernike moments for feature extraction. Experiments with classic classifiers were done. Results Support vector machines stood out, reaching an average accuracy of 89.78%, average sensitivity of 0.8979, and average precision and specificity of 0.8985 and 0.9963, respectively. Conclusion Using features based on textures and shapes combined with classical classifiers, the developed system was able to differentiate COVID-19 from viral and bacterial pneumonia with low computational cost.
A new kind of coronavirus, the SARS-Cov2, started the biggest pandemic of the century. It has already killed more than 250,000 people. Because of this, it is necessary quick and precise diagnosis test. The current gold standard is the RT-PCR with DNA sequencing and identification, but its results takes too long to be available. Tests base on IgM/IgG antibodies have been used, but their sensitivity and specificity may be very low. Many studies have been demonstrating the Covid-19 impact in hematological parameters. This work proposes an intelligent system to support Covid-19 diagnosis based on blood testing. We tested several machine learning methods, and we achieved high classification performance: 95.159% ± 0.693 of overall accuracy, kappa index of 0.903 ± 0.014, sensitivity of 0.968 ± 0.007, precision of 0.938 ± 0.010 and specificity of 0.936 ± 0.011. These results were achieved using classical and low computational cost classifiers, with Bayes Network being the best of them. In addition, only 24 blood tests were needed. This points to the possibility of a new rapid test with low cost. The desktop version of the system is fully functional and available for free use. *
In late 2019, the SARS-Cov-2 spread worldwide. The virus has high rates of proliferation and causes severe respiratory symptoms, such as pneumonia. There is still no specific treatment and diagnosis for the disease. The standard diagnostic method for pneumonia is chest X-ray image. There are many advantages to using Covid-19 diagnostic X-rays: low cost, fast and widely available. We propose an intelligent system to support diagnosis by X-ray images.We tested Haralick and Zernike moments for feature extraction. Experiments with classic classifiers were done. Support vector machines stood out, reaching an average accuracy of 89.78%, average recall and sensitivity of 0.8979, and average precision and specificity of 0.8985 and 0.9963 respectively. The system is able to differentiate Covid-19 from viral and bacterial pneumonia, with low computational cost.
The disease caused by the new type of coronavirus, Covid-19, has posed major public health challenges for many countries. With its rapid spread, since the beginning of the outbreak in December 2019, the disease transmitted by SARS-CoV-2 has already caused over 2 million deaths to date. In this work, we propose a web solution, called Heg.IA, to optimize the diagnosis of Covid-19 through the use of artificial intelligence. Our system aims to support decision-making regarding to diagnosis of Covid-19 and to the indication of hospitalization on regular ward, semi-ICU or ICU based on decision a Random Forest architecture with 90 trees. The main idea is that healthcare professionals can insert 41 hematological parameters from common blood tests and arterial gasometry into the system. Then, Heg.IA will provide a diagnostic report. The system reached good results for both Covid-19 diagnosis and to recommend hospitalization. For the first scenario we found average results of accuracy of 92.891%±0.851, kappa index of 0.858 ± 0.017, sensitivity of 0.936 ± 0.011, precision of 0.923 ± 0.011, specificity of 0.921 ± 0.012 and area under ROC of 0.984 ± 0.003. As for the indication of hospitalization, we achieved excellent performance of accuracies above 99% and more than 0.99 for the other metrics in all situations. By using a computationally simple method, based on the classical decision trees, we were able to achieve high diagnosis performance. Heg.IA system may be a way to overcome the testing unavailability in the context of Covid-19.
Communicated by Ramaswamy H. Sarma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.