Level 5 autonomy, as defined by the Society of Automotive Engineers, requires the vehicle to function under all weather and visibility conditions. This sensing problem becomes significantly challenging in weather conditions that include events such as sudden changes in lighting, smoke, fog, snow, and rain. No standalone sensor currently in the market can reliably perceive the environment in all conditions. While regular cameras, lidars, and radars will suffice for typical driving conditions, they may fail in some edge cases. The goal of this paper is to demonstrate that the addition of Long Wave Infrared (LWIR)/thermal cameras to the sensor stack on a self-driving vehicle can help fill this sensory gap during adverse visibility conditions. In this paper, we trained a machine learning-based image detector on thermal image data and used it for vehicle detection. For vehicle tracking, Joint Probabilistic Data association and Multiple Hypothesis Tracking approaches were explored where the thermal camera information was fused with a front-facing radar. The algorithms were implemented using FLIR thermal cameras on a 2017 Lincoln MKZ operating in College Station, TX, USA. The performance of the tracking algorithm has also been validated in simulations using Unreal Engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.