SUMMARY
Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify a SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and is capable of driving glioma initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc finger E-box binding homeobox 1 (ZEB1) as potential SOX2 targets, which are frequently co-expressed irrespective of driver mutations. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor suppressor deficient astrocytes into glioma initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.