Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid platforms of multidimensional (MD) separations and mass spectrometry have provided the most powerful solution. Multidimensional separations provide enhanced peak capacity and reduce sample complexity, which enables mass spectrometry to analyze more proteins with high sensitivity. Although two-dimensional (2D) separations have been widely used since the early period of proteomics, three-dimensional (3D) separation was barely used by low reproducibility of separation, increased analysis time in mass spectrometry. With developments of novel microscale techniques such as nano-UPLC and improvements of mass spectrometry, the 3D separation becomes a reliable and practical selection. This review summarizes existing offline and online 3D-LC platforms developed for proteomics and their applications. In detail, setups and implementation of those systems as well as their advances are outlined. The performance of those platforms is also discussed and compared with the state-of-the-art 2D-LC. In addition, we provide some perspectives on the future developments and applications of 3D-LC in proteomics.
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.