Chromatin structure plays a fundamental role in the regulation of nuclear processes such as DNA transcription, replication, recombination, and repair. Despite considerable efforts during three decades, the structure of the 30-nm chromatin fiber remains controversial. To define fiber dimensions accurately, we have produced very long and regularly folded 30-nm fibers from in vitro reconstituted nucleosome arrays containing the linker histone and with increasing nucleosome repeat lengths (10 to 70 bp of linker DNA). EM measurements show that the dimensions of these fully folded fibers do not increase linearly with increasing linker length, a finding that is inconsistent with two-start helix models. Instead, we find that there are two distinct classes of fiber structure, both with unexpectedly high nucleosome density: arrays with 10 to 40 bp of linker DNA all produce fibers with a diameter of 33 nm and 11 nucleosomes per 11 nm, whereas arrays with 50 to 70 bp of linker DNA all produce 44-nm-wide fibers with 15 nucleosomes per 11 nm. Using the physical constraints imposed by these measurements, we have built a model in which tight nucleosome packing is achieved through the interdigitation of nucleosomes from adjacent helical gyres. Importantly, the model closely matches raw image projections of folded chromatin arrays recorded in the solution state by using electron cryo-microscopy.chromatin structure ͉ electron microscopy ͉ linker histone ͉ reconstitution E ukaryotic chromosomes have a compact structure in which linear nucleosome arrays are first folded into a fiber of around 30-nm diameter (1, 2). The fundamental repeating unit of chromatin, the nucleosome core particle, organizes 147 bp of DNA in 1.7 left-handed superhelical turns around an octamer of the four core histones (H2A, H2B, H3, and H4) (3-5). Linker histone (H1͞H5) binding organizes an additional 20 bp of DNA to complete the nucleosome containing 167 bp of DNA (6, 7). Such binding determines the geometry of the DNA entering and exiting the nucleosome core particle (8). In nucleosome arrays, adjacent nucleosomes are separated by linker DNA, varying in length between 0 and 80 bp in a tissue-and species-specific manner (9, 10). In vitro, linear nucleosome arrays fold into the ''30-nm'' fiber upon increasing ionic strength (11) in a process that depends on both the integrity of the core histone N-terminal tails (12, 13) and the presence of the linker histone (14,15).During the past three decades evidence from EM (14-23), x-ray and neutron scattering (24-27), electric and photochemical dichroism (28-31), sedimentation analysis (32-35), nuclease digestion (6, 9, 36), and x-ray crystallography (4, 5, 37, 38) has led to the proposal of a number of different models for the 30-nm fiber. These models fall into two main classes: the one-start helix or solenoid models, and the two-start helix models. The solenoid models are comprised of simple one-start helices in which successive nucleosomes are adjacent in the filament and connected by linker DNA that bends into t...
Bloodstream infections caused by Candida species are of increasing importance and associated with significant mortality. We performed a multi-centre prospective observational study to identify the species and antifungal susceptibilities of invasive bloodstream isolates of Candida species in the Asia-Pacific region. The study was carried out over a two year period, involving 13 centers from Brunei, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. Identification of Candida species was performed at each study center, and reconfirmed at a central laboratory. Susceptibility testing was performed using a commercial broth dilution panel (Sensititre YeastOne YST-010, Thermofisher, United Kingdom) with susceptibility categorisation (S = susceptible, S-DD = susceptible dose-dependent) applied using breakpoints from the Clinical Laboratory Standards Institute. Eight hundred and sixty-one Candida isolates were included in the study. The most common species were C. albicans (35.9%), C. tropicalis (30.7%), C. parapsilosis (15.7%), and C. glabrata (13.6%). Non-albicans species exceeded C. albicans species in centers from all countries except Taiwan. Fluconazole susceptibility was almost universal for C. albicans (S = 99.7%) but lower for C. tropicalis (S = 75.8%, S-DD = 6.1%), C. glabrata (S-DD = 94.9%), and C. parapsilosis (S = 94.8%). Echinocandins demonstrated high rates of in vitro susceptibility (S>99%) against C. albicans, C. tropicalis, and C. parapsilosis This study demonstrates that non-albicans species are the most common isolates from bloodstream infections in most countries in the Asia-Pacific region, with C. tropicalis as the predominant species. Because of the prevalence of reduced susceptibility to fluconazole in non-albicans species, the study indicates that echinocandins should be the antifungal of choice in clinically unstable or high-risk patients with documented candidemia.
In this chapter, authors try to explain and develop a robot for medical application. Some robot is already working with doctor and some is under improvement stage. Master and Slave Transluminal Endoscopic Robot (MASTER) with 9 degree of freedom (DOF) end effectors which are long and flexible so as to enhance endoscopic procedures and notes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.