The Gin protein of bacteriophage Mu mediates recombination between two inverted repeat sequences. Gin binds as a dimer to each of these recombination sites. We show that Gin is a dimer in solution also, and that the dimerization is probably stabilized by hydrophobic interactions between the subunits. The subunits of the dimer could efficiently be cross-linked with the 4-A cross-linker diepoxybutane. Spontaneous oxidation of Cys(24) and/or Cys(27) also resulted in intersubunit cross-linking. One or both cysteine residues are located at the interface of the Gin dimer, which maps the dimerization domain in the N-terminal part of the protein. Binding of the disulfide-bonded dimers of Gin to a recombination site was strongly reduced, suggesting that the subunits need to reorient in order to form a stable protein-DNA complex. In the protein-DNA complex, however, oxidation of cysteine residues still seems to be possible, indicating that the N-terminal parts of two Gin subunits are also in close proximity when bound to DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.