For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This technique is already used for bonding silicate-based materials, like fused silica and Zerodur. In application with silicon carbide, the technique is highly experimental and the aim is to test the strength of the bond with silicon carbide. The silicon carbide is polished to λ/10 PV flatness and then oxidized at 1100 • C in a wet environment prior to bonding to form a necessary layer of SiO 2 on the surface. The bonding is performed in clean room conditions. After bonding the pieces are sawed into bars to determine the strength in a four-point bending experiment. The oxidization process shows many different color changes indicating thickness variations and contamination of the oxidization process. The bonding has been performed with success. However, these bonds are not resistant against aqueous cooling fluids, which are used during sawing. Several bars have survived the sawing and a maximum strength of 30 N mm −2 has been measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.