Real-life planning problems are often complicated by the occurrence of disturbances, which imply that the original plan cannot be followed anymore and some recovery action must be taken to cope with the disturbance. In such a situation it is worthwhile to arm yourself against possible disturbances by including recourse actions in your planning strategy. Well-known approaches to create plans that take possible, common disturbances into account are robust optimization and stochastic programming. More recently, another approach has been developed that combines the best of these two: recoverable robustness. In this paper, we solve recoverable robust optimization problems by the technique of column generation. We consider two types of decomposition approaches: separate recovery and combined recovery. We investigate our approach for two example problems: the size robust knapsack problem, in which the knapsack size may get reduced, and the demand robust shortest path problem, in which the sink is uncertain and the cost of edges may increase. For each problem, we present elaborate computational experiments. We think that our approach is very promising and can be generalized to many other problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.