We introduce AMGe, an algebraic multigrid method for solving the discrete equations that arise in Ritz-type finite element methods for partial differential equations. Assuming access to the element stiffness matrices, we have that AMGe is based on the use of two local measures, which are derived from global measures that appear in existing multigrid theory. These new measures are used to determine local representations of algebraically "smooth" error components that provide the basis for constructing effective interpolation and, hence, the coarsening process for AMG. Here, we focus on the interpolation process; choice of the coarse "grids" based on these measures is the subject of current research. We develop a theoretical foundation for AMGe and present numerical results that demonstrate the efficacy of the method.
We introduce spectral element-based algebraic multigrid (ρAMGe), a new algebraic multigrid method for solving systems of algebraic equations that arise in Ritz-type finite element discretizations of partial differential equations. The method requires access to the element stiffness matrices, which enables accurate approximation of algebraically "smooth" vectors (i.e., error components that relaxation cannot effectively eliminate). Most other algebraic multigrid methods are based in some manner on predefined concepts of smoothness. Coarse-grid selection and prolongation, for example, are often defined assuming that smooth errors vary slowly in the direction of "strong" connections (relatively large coefficients in the operator matrix). One aim of ρAMGe is to broaden the range of problems to which the method can be successfully applied by avoiding any implicit premise about the nature of the smooth error. ρAMGe uses the spectral decomposition of small collections of element stiffness matrices to determine local representations of algebraically smooth error components. This provides a foundation for generating the coarse level and for defining effective interpolation. This paper presents a theoretical foundation for ρAMGe along with numerical experiments demonstrating its robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.