In a recent paper [15], Giardinà, Giberti, Hofstad, Prioriello have proved a law of large number and a central limit theorem with respect to the annealed measure for the magnetization of the Ising model on some random graphs including the random 2-regular graph. We present a new proof of their results, which applies to all random regular graphs. In addition, we prove the existence of annealed pressure in the case of configuration model random graphs.
We study the contact process on the configuration model with a power law degree distribution, when the exponent is smaller than or equal to two. We prove that the extinction time grows exponentially fast with the size of the graph and prove two metastability results. First the extinction time divided by its mean converges in distribution toward an exponential random variable with mean one, when the size of the graph tends to infinity. Moreover, the density of infected sites taken at exponential times converges in probability to a constant. This extends previous results in the case of an exponent larger than 2 obtained in [3,7,8].
In this paper we prove lower and upper bounds for the extinction time of the contact process on random geometric graphs with connection radius tending to infinity. We obtain that for any infection rate λ > 0, the contact process on these graphs survives a time super-exponential in the number of vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.