Background: E-commerce websites have been established expressly as useful online communication platforms, which is rather significant. Through them, users can easily perform online transactions such as shopping or ordering food and sharing their experiences or feedback. Objectives: Customers’ views and sentiments are also analyzed by businesses to assess consumer behavior or a point of view on certain products or services. Methods/Approach: This research proposes a method to extract customers’ opinions and analyse sentiment based on a collected dataset, including 236,867 online Vietnamese reviews published from 2011 to 2020 on foody.vn and diadiemanuong.com. Then, machine learning models were applied and assessed to choose the optimal model. Results: The proposed approach has an accuracy of up to 91.5 percent, according to experimental study findings. Conclusions: The research results can help enterprise managers and service providers get insight into customers’ satisfaction with their products or services and understand their feelings so that they can make adjustments and correct business decisions. It also helps food e-commerce managers ensure a better e-commerce service design and delivery.
Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.
The rapid development of technology has digitized customer payment behavior towards a cashless society. To a certain extent, this has created a feast for miscreants to commit fraud. According to Nilson (2020), global fraud loss is projected to reach over $35 billion by 2025. Consequently, the need for a novel method to prevent this menace is undisputed. This research was conducted on the IEEE-CIS Fraud Detection Dataset provided by Vesta Corporation. Based on the logic of labeling for converting the entire account to ''Fraud=1'' once the credit card has fraud, we navigate the research process towards predicting fraudulent credit cards rather than fraudulent transactions. The key idea behind the proposed model is user separation, in which we divide users into old and new people before applying CatBoost and Deep Neural Network to each category, respectively. In addition, a variety of techniques to improve detection accuracy, namely handling heavily imbalanced datasets, feature transformation, and feature engineering, are also presented in detail in this paper. The experimental results showed that our model performed well, as we obtained AUC scores of 0.97 (CatBoost) and 0.84 (Deep Neural Network).
Purpose This study aims to analyse online customer experience in the hospitality industry through dynamic topic modelling (DTM) and net promoter score (NPS). A novel model that was used for collecting, pre-processing and analysing online reviews was proposed to understand the hidden information in the corpus and gain customer experience. Design/methodology/approach A corpus with 259,470 customer comments in English was collected. The researchers experimented and selected the best K parameter (number of topics) by perplexity and coherence score measurements as the input parameter for the model. Finally, the team experimented on the corpus using the Latent Dirichlet allocation (LDA) model and DTM with K coefficient to explore latent topics and trends of topics in the corpus over time. Findings The results of the topic model show hidden topics with the top high-probability keywords that are concerned with customers and the trends of topics over time. In addition, this study also calculated and analysed the NPS from customer rating scores and presented it on an overview dashboard. Research limitations/implications The data used in the experiment are only a part of all user comments; therefore, it may not reflect all of the current customer experience. Practical implications The management and business development of companies in the hotel industry can also benefit from the empirical findings from the topic model and NPS analytics, which will support decision-making to help businesses improve products and services, increase existing customer satisfaction and draw in new customers. Originality/value This study differs from previous works in that it attempts to fill a gap in research focused on online customer experience in the hospitality industry and uses text analytics and NPS to reach this goal.
PurposeThe purpose of this paper is to expand and analyze deeply customer emotions, concretize the levels of positive or negative emotions with the aim of using machine learning methods, and build a model to identify customer emotions.Design/methodology/approachThe study proposed a customer emotion detection model and data mining method based on the collected dataset, including 80,593 online reviews on agoda.com and booking.com from 2009 to 2022.FindingsBy discerning specific emotions expressed in customers' comments, emotion detection, which refers to the process of identifying users' emotional states, assumes a crucial role in evaluating the brand value of a product. The research capitalizes on the vast and diverse data sources available on hotel booking websites, which, despite their richness, remain largely unexplored and unanalyzed. The outcomes of the model, pertaining to the detection and classification of customer emotions based on ratings and reviews into four distinct emotional states, offer a means to address the challenge of determining customer satisfaction regarding their actual service experiences. These findings hold substantial value for businesses operating in this domain, as the findings facilitate the evaluation and formulation of improvement strategies within their business models. The experimental study reveals that the proposed model attains an exact match ratio, precision, and recall rates of up to 81%, 90% and 90%, respectively.Research limitations/implicationsThe study has yet to mine real-time data. Prediction results may be influenced because the amount of data collected from the web is insufficient and preprocessing is not completely suppressed. Furthermore, the model in the study was not tested using all algorithms and multi-label classifiers. Future research should build databases to mine data in real-time and collect more data and enhance the current model.Practical implicationsThe study's results suggest that the emotion detection models can be applied to the real world to quickly analyze customer feedback. The proposed models enable the identification of customers' emotions, the discovery of customer demand, the enhancement of service, and the general customer experience. The established models can be used by many service sectors to learn more about customer satisfaction with the offered goods and services from customer reviews.Social implicationsThe research paper helps businesses in the hospitality area analyze customer emotions in each specific aspect to ensure customer satisfaction. In addition, managers can come up with appropriate strategies to bring better products and services to society and people. Subsequently, fostering the growth of the hotel tourism sector within the nation, thereby facilitating sustainable economic development on a national scale.Originality/valueThis study developed a customer emotions detection model for detecting and classifying customer ratings and reviews as 4 specific emotions: happy, angry, depressed and hopeful based on online booking hotel websites agoda.com and booking.com that contains 80,593 reviews in Vietnamese. The research results help businesses check and evaluate the quality of their services, thereby offering appropriate improvement strategies to increase customers' satisfaction and demand more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.