The carboxyl methyltransferase, which is claimed to exclusively methylate the carboxyl group of the C-terminal leucine residue of the catalytic subunit of protein phosphatase 2A (Leu(309)), was purified from porcine brain. On the basis of tryptic peptides, the cDNA encoding the human homologue was cloned. The cDNA of this gene encodes for a protein of 334 amino acids with a calculated M(r) of 38 305 and a predicted pI of 5.72. Database screening reveals the presence of this protein in diverse phyla. Sequence analysis shows that the novel methyltransferase is distinct from other known protein methyltransferases, sharing only sequence motifs supposedly involved in the binding of adenosylmethionine. The recombinant protein expressed in bacteria is soluble and the biophysical, catalytic, and immunological properties are indistinguishable from the native enzyme. The methylation of PP2A by the recombinant protein is restricted to Leu(309) of PP2A(C). No direct effects on phosphatase activity changes were observed upon methylation of the dimeric or trimeric forms of PP2A.
Phosphotyrosyl phosphatase activator (PTPA), a 37 kDa cytosolic protein that specifically activates the phosphotyrosyl phosphatase activity of the dimeric form of PP2A, was cloned from Drosophila melanogaster and Saccharomyces cerevisiae. Sequence alignment of PTPA from yeast to human revealed highly conserved regions including the type B fragment of the putative PTPA ATP binding site. We generated PTPA deletion mutants of these conserved regions as well as point mutations within regions that were suggested to be functionally important. The recombinant proteins were expressed in E. coli and subsequently purified. Activity measurements, linked with immunological detection, revealed that most of the well-conserved regions are essential for PTPA activity. However, neither the type A fragment of the putative ATP binding site nor the cysteine-rich region, present in all but the Drosophila and yeast homologues, appeared to be essential for PTPA activity. Moreover, we observed that PTPA truncated at glycine266 behaves as a dominant negative mutant since it is inhibitory to the wild-type PTPA.
cDNA clones encoding the 65-kDa (PR65) and 55-kDa (PR55) regulatory subunits of protein phosphatase 2A from Xenopus laevis were isolated by homology screening with the corresponding human cDNAs, and used to analyze the developmental expression patterns of these genes. The PR65 subunit was found to be encoded by two genes, termed XPR65 alpha and XPR65 beta. The open reading frames of the alpha and beta cDNAs both span 1767 bp, and predict proteins of 64.4 kDa and 65.3 kDa, respectively, that are 87% identical. The predicted amino acid sequence of XPR65 alpha showed 95% and 84% identity with human PR65 alpha and PR65 beta proteins, respectively, whereas the identity of XPR65 beta with the same proteins was 87% and 86.5%, respectively. Only one type of Xenopus PR55 (XPR55) was isolated that showed 93% and 84% similarity to human PR55 alpha and PR55 beta, respectively. Analysis of the N-terminal region of XPR55 with the same regions of human PR55 alpha and PR55 beta, indicates that the XPR55 is the Xenopus homolog of the human PR55 alpha isoform. Despite the overall similarity with PR55 from other species, XPR55 has an N-terminal extention of at least 24 amino acids. In the ovary, a transcript of 2.8 kb, encoding the XPR65 beta, was predominantly expressed and these XPR65 beta mRNAs are present at a constant level during oogenesis until late embryogenesis. Expression of the 2.4-kb XPR65 alpha was low until the larval stage, then dramatically increased. In all adult tissues except ovary, the 2.4-kb alpha-specific mRNA was more abundant than the 2.8-kb beta transcript. Two transcripts of 2.4 kb and 2.5 kb, encoding the XPR55 subunit, were detected at a constant level throughout Xenopus oogenesis and during embryogenesis. Both transcripts were also expressed at similar levels in all adult tissues, but in a tissue-specific manner. Analysis of the XPR55 and XPR65 proteins using antibodies to recombinant proteins revealed that the overall levels of the two proteins were constant, in good agreement with mRNA data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.