Background Residual feed intake (RFI) is one measure of feed efficiency, which is usually obtained by multiple regression of feed intake (FI) on measures of production, body weight gain and tissue composition. If phenotypic regression is used, the resulting RFI is generally not genetically independent of production traits, whereas if RFI is computed using genetic regression coefficients, RFI and production traits are independent at the genetic level. The corresponding regression coefficients can be easily derived from the result of a multiple trait model that includes FI and production traits. However, this approach is difficult to apply in the case of multiple repeated measurements of FI and production traits. To overcome this difficulty, we used a structured antedependence approach to account for the longitudinality of the data with a phenotypic regression model or with different genetic and environmental regression coefficients [multi- structured antedependence model (SAD) regression model]. Results After demonstrating the properties of RFI obtained by the multi-SAD regression model, we applied the two models to FI and production traits that were recorded for 2435 French Large White pigs over a 10-week period. Heritability estimates were moderate with both models. With the multi-SAD regression model, heritability estimates were quite stable over time, ranging from 0.14 ± 0.04 to 0.16 ± 0.05, while heritability estimates showed a U-shaped profile with the phenotypic regression model (ranging from 0.19 ± 0.06 to 0.28 ± 0.06). Estimates of genetic correlations between RFI at different time points followed the same pattern for the two models but higher estimates were obtained with the phenotypic regression model. Estimates of breeding values that can be used for selection were obtained by eigen-decomposition of the genetic covariance matrix. Correlations between these estimated breeding values obtained with the two models ranged from 0.66 to 0.83. Conclusions The multi-SAD model is preferred for the genetic analysis of longitudinal RFI because, compared to the phenotypic regression model, it provides RFI that are genetically independent of production traits at all time points. Furthermore, it can be applied even when production records are missing at certain time points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.