In industrial monitoring and control applications, a server often has to send a command to a node or group of nodes in wireless sensor networks. Flooding achieves high reliability of message delivery by allowing nodes to take the redundancy of receiving the identical message multiple times. However, nodes consume much energy due to this redundancy and the long duty cycle. A reliable slotted broadcast protocol (RSBP) tackles this problem by allocating a distinct broadcast slot (BS) to every node using a tree topology. Not only does it remove collision, but it also minimizes energy consumption such that every node remains active only during its parent’s broadcast slot and its own broadcast slot to receive and rebroadcast a message, respectively. However, it suffers from low reliability in harsh environments due to the compete removal of redundancy and low responsiveness to the changes in network topology due to the global scheduling of slots. Our approach allocates one distinct broadcast sharable slot (BSS) to each tree level, thus making a BSS schedule topology-independent. Then, nodes at the same level compete to rebroadcast a message to nodes at one level higher within the BSS, thus allowing the redundancy. In addition, it uses a slot-scheduled transmission within BSS that can further improve reliability by reducing message collisions and also enables the precise management of energy. According to simulations and experiments, the proposed approach can achieve high reliability comparable to flooding and low-energy consumption comparable to RSBP.
Multimedia applications using wireless sensor networks often require bounds for end-to-end delay and packet loss rate in addition to energy efficiency in delivering a series of packets sliced from an image. This paper proposes a pipelined cooperative transmission (PCT) protocol for fast and reliable image delivery based on a tree topology originating from a sink, and allocation of a distinct time slot to each tree level. In this approach, if a sink needs an image from a specific multimedia node, it establishes a cooperative path such that a path node, a node on the tree path from the multimedia node to the sink, selects a cooperating node from its neighboring nodes at the same tree level. Then, the cooperating node assists its counterpart using the information obtained by means of overhearing message or data in order to forward a packet reliably to the nodes one level lower. This transmission mechanism improves the reliability of hopby-hop transmission greatly without relying on retransmissions while making the packet move fast. Packets are transmitted in a pipelined manner using two channels such that different nodes at every other level send packets simultaneously. The proposed protocol is verified by analysis, simulation, and experiment, showing that it far outperforms the recent best approach in terms of end-to-end delay and energy consumption while achieving a high packet delivery rate.
In wireless sensor networks (WSNs), a sink must broadcast periodically a command message to a group of nodes or all nodes to control the operation of the network. However, the sparse distribution and limited resources of nodes bring difficulties for efficient broadcasting. In this paper, we propose an energy-efficient command broadcast protocol based on the construction of a spanning tree which includes maximizing the number of leaf nodes, and the allocation of one sharable slot to each tree level. The sharable slot that allocates to tree level will be divided into multiple mini slots, and non-leaf nodes at the same level will compete for broadcasting; in this way, collision can be reduced. Moreover, a node that moves to another level can use the sharable slot allocated to the new level without reallocating the slots. Extensive simulations prove that this approach not only achieves high reliability of message delivery but also energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.