Intrusion detection for computer network systems becomes one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to its valuable resources on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion. Besides, anomaly detection in network security is aim to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, which it uses to detect new patterns that significantly deviate from the model. Most of the current research on anomaly detection is based on the learning of normally and anomaly behaviors. They do not take into account the previous, recent events to detect the new incoming one. In this paper, we propose a real time collective anomaly detection model based on neural network learning and feature operating. Normally a Long Short-Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained with normal time series data before performing a live prediction for each time step. Instead of considering each time step separately, the observation of prediction errors from a certain number of time steps is now proposed as a new idea for detecting collective anomalies. The prediction errors from a number of the latest time steps above a threshold will indicate a collective anomaly. The model is built on a time series version of the KDD 1999 dataset. The experiments demonstrate that it is possible to offer reliable and efficient for collective anomaly detection.
This paper proposes latent representation models for improving network anomaly detection. Well-known anomaly detection algorithms often suffer from challenges posed by network data, such as high dimension and sparsity, and a lack of anomaly data for training, model selection, and hyperparameter tuning. Our approach is to introduce new regularizers to a classical autoencoder (AE) and a variational AE, which force normal data into a very tight area centered at the origin in the nonsaturating area of the bottleneck unit activations. These trained AEs on normal data will push normal points toward the origin, whereas anomalies, which differ from normal data, will be put far away from the normal region. The models are very different from common regularized AEs, sparse AE, and contractive AE, in which the regularized AEs tend to make their latent representation less sensitive to changes of the input data. The bottleneck feature space is now used as a new data representation. A number of one-class learning algorithms are used for evaluating the proposed models. The experiments testify that our models help these classifiers to perform efficiently and consistently on high-dimensional and sparse network datasets, even with relatively few training points. More importantly, the models can minimize the effect of model selection on these classifiers since their performance is insensitive to a wide range of hyperparameter settings.
In this paper, we develop a new deep learning approach, Multi-distributed Variational AutoEncoder (MVAE), to enhance network intrusion detection. MVAE introduces label information of data samples into the loss function of VAE. This label information together with reconstruction error function of VAE will force each class of network data into a different region in the latent feature space of MVAE. As a result, the network traffic samples are more distinguishable in the new representation space, thereby improving the accuracy in detecting intrusions for classifiers in the latent feature space of MVAE. To evaluate the efficiency of the proposed solution, we carry out intensive experiments on two popular network intrusion datasets, i.e., NSL-KDD and UNSW-NB15 under four conventional classifiers including Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The experimental results demonstrate that our proposed approach can significantly improve the accuracy of intrusion detection algorithms up to 0.246 compared to the original one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.