Computing services for the Internet-of-Things (IoT) play a vital role for widespread IoT deployment. A hierarchy of Edge-Cloud publish/subscribe (pub/sub) broker overlay networks that support latency-sensitive IoT applications in a scalable manner is introduced. In addition, we design algorithms to cluster edge pub/sub brokers based on topic similarities and geolocations to enhance data dissemination among end-to-end IoT devices. The proposed model is designed to provide low delay data dissemination and effectively save network traffic among brokers. In the proposed model, IoT devices running pub/sub client applications periodically send collected data, organized as a hierarchy of topics, to their closest edge pub/sub brokers. Then, the data are processed/analyzed at edge nodes to make controlling decisions promptly replying to the IoT devices and/or aggregated for further delivery to other interested edge brokers or to cloud brokers for long-term processing, analysis, and storage. Extensive simulation results demonstrate that our proposal achieves the best data delivery latency compared to two baseline schemes, a classical Cloud-based pub/sub scheme and an Edge-Cloud pub/sub scheme. Considering the similar Edge-Cloud technique, the proposed scheme outperforms PubSubCoord-alike in terms of relay traffic ratio among brokers. Therefore, our proposal can adapt well to support wide-scale latency-sensitive IoT applications. IntroductionRecent advancements in Internet-of-Things (IoT) technologies have enabled various applications in many domains, such as agriculture, healthcare, transportation, industrial automation, and smart homes [1]. In these applications, IoT devices, for example, wearables, smart meters, and smart appliances, will create an unprecedented amount of data that needs to be transferred, stored, and analyzed at proper places. Cisco estimates that, with the widespread adoption of the IoT, by 2021 847 zettabytes (ZB) of IoT data will be generated per year [2]. A large part of that data will be ephemeral and approximately 7.2 ZB will be stored in the Cloud [2]. In addition, data are primarily generated near the edge of the network and will be processed by applications deployed at the edge to provide fast reactions. A portion of the data and information extracted will be uploaded to the Cloud. Designing a communication platform to provide low latency and high scalability for such IoT applications is a challenging.Cloud computing platforms, typically characterized by on-demand self-service, resource pooling, and rapid elasticity, have proved to be a useful and economic alternatives for various applications, such as collaboration and computing-intensive applications [3,4]. However, latency-sensitive applications Symmetry 2020, 12, 3 2 of 18 restrict low transmission delay and require quality of service conditions; thus, these applications may not be suitable to be solely deployed in the Cloud. Moreover, deploying many wide-scale IoT projects requires the support of computing platforms with specialized charac...
Large-scale IoT applications with dozens of thousands of geo-distributed IoT devices creating enormous volumes of data pose a big challenge for designing communication systems that provide data delivery with low latency and high scalability. In this paper, we investigate a hierarchical Edge-Cloud publish/subscribe brokers model using an efficient two-tier routing scheme to alleviate these issues when transmitting event notifications in wide-scale IoT systems. In this model, IoT devices take advantage of proximate edge brokers strategically deployed in edge networks for data delivery services in order to reduce latency. To deliver data more efficiently, we propose a proactive mechanism that applies collaborative filtering techniques to efficiently cluster edge brokers with geographic proximity that publish and/or subscribe to similar topics. This allows brokers in the same cluster to exchange data directly with each other to further reduce data delivery latency. In addition, we devise a coordinative scheme to help brokers discover and bridge similar topic channels in the whole system, informing other brokers for data delivery in an efficient manner. Extensive simulation results prove that our model can adeptly support event notifications in terms of low latency, small amounts of relay traffic, and high scalability for large-scale, delay-sensitive IoT applications. Specifically, in comparison with other similar Edge-Cloud approaches, our proposal achieves the best in terms of relay traffic among brokers, about 7.77% on average. In addition, our model’s average delivery latency is approximately 66% of PubSubCoord-alike’s one.
The edge computing paradigm has emerged as a new scope within the domain of the Internet of Things (IoT) by bringing cloud services to the network edge in order to construct distributed architectures. To efficiently deploy latency-sensitive and bandwidth-hungry IoT application services, edge computing paradigms make use of devices on the network periphery that are distributed and resource-constrained. On the other hand, microservice architectures are becoming increasingly popular for developing IoT applications owing to their maintainability and scalability advantages. Providing an efficient communication medium for large-scale microservice-based IoT applications constructed from small and independent services to cooperate to deliver value-added services remains a challenge. This paper introduces an event-driven communication medium that takes advantage of Edge–Cloud publish/subscribe brokers for microservice-based IoT applications at scale. Using the interaction model, the involved microservices can collaborate and exchange data through triggered events flexibly and efficiently without changing their underlying business logic. In the proposed model, edge brokers are grouped according to their similarities in event channels and the proximity of their geolocations, reducing the data delivery latency. Moreover, in the proposed system a technique is designed to construct a broker-based utility matrix with constraints in order to strike a balance between delay, relay traffic, and scalability while arranging brokers into proper clusters for efficient data delivery. Rigorous simulation results prove that the proposed publish/subscribe model can provide an efficient interaction medium for microservice-based IoT applications to collaborate and exchange data with low latency, modest relay traffic, and high scalability at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.